Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

B = [4 1 -6 3 7 9 5 -6 4 -4 -10 -8 1 6 1 6 -8 -3 -9 -8;6 4 3 -5 -9 -8 -2 -7 -3 -

ID: 3282286 • Letter: B

Question

B = [4 1 -6 3 7 9 5 -6 4 -4 -10 -8 1 6 1 6 -8 -3 -9 -8;6 4 3 -5 -9 -8 -2 -7 -3 -1 -3 -9 0 -1 -5 5 -4 -9 6 8;4 -5 3 -8 10 8 4 1 0 7 1 -2 8 -4 7 2 3 -3 -5 1;1 1 2 -2 7 7 8 -7 7 10 9 1 -5 8 9 -8 2 -8 -7 6;-8 -2 -4 1 -8 -7 -4 2 7 0 -2 8 3 7 -10 -1 -1 7 -6 7;-6 7 -6 -8 5 -4 -4 10 4 3 7 1 -0 5 -6 -8 -4 2 4 6;9 -4 4 1 3 -2 1 4 9 5 -2 -5 1 4 1 -3 -8 4 -6 2;-10 3 8 -10 -1 5 -3 10 -4 -5 -7 9 -2 -3 -7 7 -2 1 1 -4;-9 5 8 2 -5 -4 -2 8 -7 -5 -3 -6 10 -7 2 -3 1 -3 -2 3;-3 3 -6 -1 0 -7 9 -6 6 -9 10 10 -3 7 -5 -6 3 7 -0 5;-4 -2 4 7 -4 -7 8 9 -9 8 7 -3 3 -1 6 5 -4 -7 -9 -5;-2 -3 7 6 -4 -0 -8 -3 -9 -4 -9 0 6 -2 -1 -5 1 -4 -7 1;-8 4 10 -9 8 0 -4 -1 -7 -6 1 -7 6 -6 6 -10 -6 -4 -8 2;9 -3 0 -4 -8 3 -7 2 -1 9 -2 -5 -6 9 -0 1 -1 6 -8 7;-0 -7 -2 0 10 4 6 8 -2 3 -5 2 5 -2 -4 -1 6 -3 -2 -2;-7 -6 -10 8 -1 2 2 -7 2 -5 -2 -8 -6 -8 1 6 8 9 10 -7;0 -9 2 9 9 9 -9 -4 5 1 -6 0 9 8 4 -6 -1 2 -8 1;-0 7 4 4 -3 -2 -10 9 -9 -9 8 2 -4 5 -6 7 3 -7 1 -7;-10 8 -4 -8 -7 -9 -0 -8 0 -3 -3 4 8 8 -5 -7 -7 4 8 -4;-3 -7 -7 -5 7 10 5 -1 -4 5 -3 2 -2 10 -3 -10 5 -9 -6 5]  

Here is the matrix typed out. MATLAB Question!!!!

B = [4 1 -6 3 7 9 5 -6 4 -4 -10 -8 1 6 1 6 -8 -3 -9 -8;6 4 3 -5 -9 -8 -2 -7 -3 -1 -3 -9 0 -1 -5 5 -4 -9 6 8;4 -5 3 -8 10 8 4 1 0 7 1 -2 8 -4 7 2 3 -3 -5 1;1 1 2 -2 7 7 8 -7 7 10 9 1 -5 8 9 -8 2 -8 -7 6;-8 -2 -4 1 -8 -7 -4 2 7 0 -2 8 3 7 -10 -1 -1 7 -6 7;-6 7 -6 -8 5 -4 -4 10 4 3 7 1 -0 5 -6 -8 -4 2 4 6;9 -4 4 1 3 -2 1 4 9 5 -2 -5 1 4 1 -3 -8 4 -6 2;-10 3 8 -10 -1 5 -3 10 -4 -5 -7 9 -2 -3 -7 7 -2 1 1 -4;-9 5 8 2 -5 -4 -2 8 -7 -5 -3 -6 10 -7 2 -3 1 -3 -2 3;-3 3 -6 -1 0 -7 9 -6 6 -9 10 10 -3 7 -5 -6 3 7 -0 5;-4 -2 4 7 -4 -7 8 9 -9 8 7 -3 3 -1 6 5 -4 -7 -9 -5;-2 -3 7 6 -4 -0 -8 -3 -9 -4 -9 0 6 -2 -1 -5 1 -4 -7 1;-8 4 10 -9 8 0 -4 -1 -7 -6 1 -7 6 -6 6 -10 -6 -4 -8 2;9 -3 0 -4 -8 3 -7 2 -1 9 -2 -5 -6 9 -0 1 -1 6 -8 7;-0 -7 -2 0 10 4 6 8 -2 3 -5 2 5 -2 -4 -1 6 -3 -2 -2;-7 -6 -10 8 -1 2 2 -7 2 -5 -2 -8 -6 -8 1 6 8 9 10 -7;0 -9 2 9 9 9 -9 -4 5 1 -6 0 9 8 4 -6 -1 2 -8 1;-0 7 4 4 -3 -2 -10 9 -9 -9 8 2 -4 5 -6 7 3 -7 1 -7;-10 8 -4 -8 -7 -9 -0 -8 0 -3 -3 4 8 8 -5 -7 -7 4 8 -4;-3 -7 -7 -5 7 10 5 -1 -4 5 -3 2 -2 10 -3 -10 5 -9 -6 5]  

Here is the matrix typed out. MATLAB Question!!!!

Create a new function file called modify matrix.m. Then copy and paste the contents of the create_matrix.m file into this new file, and change the name of the function in the first line to modify_matrix (instead of create matrix) By further modifying this new file, write a function that will output a matrix A obtained by modifying an input matrix B in the following way: 1. If an entry in B is greater than or equal to zero then multiply it by 2 2. If an entry in B is less than zero then add 6 to it. Then use this new function to create a matrix A obtained by modifying the following 20 x 20 matrix B (which you can copy and paste directly into Matlab). Then find the determinant of A B=[4 1_6 3 7 9 5-64-4-10-81616-8-3-9.8:6 4 3-5-9-8-2-7-3-1-3-90-1-55-4-968:4-53-8108 4 1071-2 8-472 3-3 -5 1:1 1 2-277 8-77 1091-5 89-8 2-8 -7 6:-8-2-4 1-8-7-4 270-2 8 3 7-10-1-1 7 -6 7:-6 7-6-8 5 -4-4 104 3 71-0 5-6-8-4 2 4 6:9-4 4 1 3-2 1 495-2-5 1 4 1-3-8 4-6 2:-10 3 8-10-1 5-3 10-4-5-79-2-3 -77-2 1 1-4:-9 5 8 2 -5 -4-2 8-7-5-3-6 10 -7 2-3 1 -3 -2 3:-3 3-6-10-79-6 6-9 10 10 -3 7-5-637-05:-4-2 47-4-789-987-3 3-1 65-4-7-9 -5:-2-37 6-4-0-8-3-9-4-9 0 6-2-1-5 1-4-7 1;-8 4 10-9 80-4-1-7-61-7 6-66-10-6-4-8 2:9 -3 0 -4-8 3-7 2-19-2-5 -6 9-01 6-8 7:-0-7-2 0 10 4 68 -2 3 -5 25-2-4-1 6-3 -2-2-7-6-10 8-1 2 2-7 2-5-2-8-6-8 1 68 9 10-7:0 -9 299 9-9-45 1-609 8 4-6-1 2-8 1:-0 7 4 4-3 -2-10 9-9-9 8 2-4 5-67 3-7 1-7:-10 8-4-8-7-9 -0 -8 0 -3 -3 4 8 8-5-7-7 4 8-4:-3-7-7-5 7 10 5 -1 -4 5 -3 2-2 10 -3 -10 5 -9 -6 5]

Explanation / Answer

MATLAB code 'test.m':

close all
clear
clc

B = [4 1 -6 3 7 9 5 -6 4 -4 -10 -8 1 6 1 6 -8 -3 -9 -8;
6 4 3 -5 -9 -8 -2 -7 -3 -1 -3 -9 0 -1 -5 5 -4 -9 6 8;
4 -5 3 -8 10 8 4 1 0 7 1 -2 8 -4 7 2 3 -3 -5 1;
1 1 2 -2 7 7 8 -7 7 10 9 1 -5 8 9 -8 2 -8 -7 6;
-8 -2 -4 1 -8 -7 -4 2 7 0 -2 8 3 7 -10 -1 -1 7 -6 7;
-6 7 -6 -8 5 -4 -4 10 4 3 7 1 -0 5 -6 -8 -4 2 4 6;
9 -4 4 1 3 -2 1 4 9 5 -2 -5 1 4 1 -3 -8 4 -6 2;
-10 3 8 -10 -1 5 -3 10 -4 -5 -7 9 -2 -3 -7 7 -2 1 1 -4;
-9 5 8 2 -5 -4 -2 8 -7 -5 -3 -6 10 -7 2 -3 1 -3 -2 3;
-3 3 -6 -1 0 -7 9 -6 6 -9 10 10 -3 7 -5 -6 3 7 -0 5;
-4 -2 4 7 -4 -7 8 9 -9 8 7 -3 3 -1 6 5 -4 -7 -9 -5;
-2 -3 7 6 -4 -0 -8 -3 -9 -4 -9 0 6 -2 -1 -5 1 -4 -7 1;
-8 4 10 -9 8 0 -4 -1 -7 -6 1 -7 6 -6 6 -10 -6 -4 -8 2;
9 -3 0 -4 -8 3 -7 2 -1 9 -2 -5 -6 9 -0 1 -1 6 -8 7;
-0 -7 -2 0 10 4 6 8 -2 3 -5 2 5 -2 -4 -1 6 -3 -2 -2;
-7 -6 -10 8 -1 2 2 -7 2 -5 -2 -8 -6 -8 1 6 8 9 10 -7;
0 -9 2 9 9 9 -9 -4 5 1 -6 0 9 8 4 -6 -1 2 -8 1;
-0 7 4 4 -3 -2 -10 9 -9 -9 8 2 -4 5 -6 7 3 -7 1 -7;
-10 8 -4 -8 -7 -9 -0 -8 0 -3 -3 4 8 8 -5 -7 -7 4 8 -4;
-3 -7 -7 -5 7 10 5 -1 -4 5 -3 2 -2 10 -3 -10 5 -9 -6 5];
disp('Output:')
A = modify_matrix(B)
disp('Determinant of A:')
det(A)

Output by running 'test.m':

Output:
A =
8 2 0 6 14 18 10 0 8 2 -4 -2 2 12 2 12 -2 3 -3 -2
12 8 6 1 -3 -2 4 -1 3 5 3 -3 0 5 1 10 2 -3 12 16
8 1 6 -2 20 16 8 2 0 14 2 4 16 2 14 4 6 3 1 2
2 2 4 4 14 14 16 -1 14 20 18 2 1 16 18 -2 4 -2 -1 12
-2 4 2 2 -2 -1 2 4 14 0 4 16 6 14 -4 5 5 14 0 14
0 14 0 -2 10 2 2 20 8 6 14 2 0 10 0 -2 2 4 8 12
18 2 8 2 6 4 2 8 18 10 4 1 2 8 2 3 -2 8 0 4
-4 6 16 -4 5 10 3 20 2 1 -1 18 4 3 -1 14 4 2 2 2
-3 10 16 4 1 2 4 16 -1 1 3 0 20 -1 4 3 2 3 4 6
3 6 0 5 0 -1 18 0 12 -3 20 20 3 14 1 0 6 14 0 10
2 4 8 14 2 -1 16 18 -3 16 14 3 6 5 12 10 2 -1 -3 1
4 3 14 12 2 0 -2 3 -3 2 -3 0 12 4 5 1 2 2 -1 2
-2 8 20 -3 16 0 2 5 -1 0 2 -1 12 0 12 -4 0 2 -2 4
18 3 0 2 -2 6 -1 4 5 18 4 1 0 18 0 2 5 12 -2 14
0 -1 4 0 20 8 12 16 4 6 1 4 10 4 2 5 12 3 4 4
-1 0 -4 16 5 4 4 -1 4 1 4 -2 0 -2 2 12 16 18 20 -1
0 -3 4 18 18 18 -3 2 10 2 0 0 18 16 8 0 5 4 -2 2
0 14 8 8 3 4 -4 18 -3 -3 16 4 2 10 0 14 6 -1 2 -1
-4 16 2 -2 -1 -3 0 -2 0 3 3 8 16 16 1 -1 -1 8 16 2
3 -1 -1 1 14 20 10 5 2 10 3 4 4 20 3 -4 10 -3 0 10
Determinant of A:
ans =
-6.9483e+24