Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

a. develop a regression model that could be used to predict the number of victor

ID: 3274934 • Letter: A

Question

a. develop a regression model that could be used to predict the number of victories based on the ERA

b) develop a regression model that could be used to predict the number of victories based on the runs scored

c.) develop a regression model that could be used to predict the number of victories based on the batting average

d.) develop a regression model that could be used to predict the number of victories based on the on-base percentage e.0 which of the four models is better for predicting the number of victories? find the best multiple regression model to predict the number of wins. use any combination of the variables to find the best model

TEAM W ERA R AVG OBP BALTIMORE ORIOLES 93 3.90 712 0.247 0.311 BOSTON RED SOX 69 4.70 734 0.260 0.315 CHICAGO WHITE SOX 85 4.02 748 0.255 0.318 CLEVELAND INDIANS 68 4.78 667 0.251 0.324 DETROIT TIGERS 88 3.75 726 0.268 0.335 KANSAS CITY ROYALS 72 4.30 676 0.265 0.317 LOS ANGELES ANGLES 89 4.02 767 0.274 0.332 MINNESTOA TWINS 66 4.77 701 0.260 0.325 NEW YORK YANKEES 95 3.85 804 0.265 0.337 OAKLAND ATHLETICS 94 3.48 713 0.238 0.310 SEATTLE MARINERS 75 3.76 619 0.234 0.296 TAMPA BAY RAYS 90 3.19 697 0.240 0.317 TEXAS RANGERS 93 3.99 808 0.273 0.334 TORONTO BLUE JAYS 73 4.64 716 0.245 0.309

Explanation / Answer

a)

Regression Analysis: W versus ERA

Analysis of Variance

Source         DF   Adj SS   Adj MS F-Value P-Value
Regression      1 1014.40 1014.40    22.16    0.001
ERA           1 1014.40 1014.40    22.16    0.001
Error          12   549.31    45.78
Lack-of-Fit 11   541.31    49.21     6.15    0.305
Pure Error    1     8.00     8.00
Total          13 1563.71


Model Summary

      S    R-sq R-sq(adj) R-sq(pred)
6.76580 64.87%     61.94%      52.95%


Coefficients

Term        Coef SE Coef T-Value P-Value   VIF
Constant   155.1     15.6     9.94    0.000
ERA       -17.87     3.80    -4.71    0.001 1.00


Regression Equation

W = 155.1 - 17.87 ERA


Fits and Diagnostics for Unusual Observations

Obs      W    Fit   Resid Std Resid
11 75.00 87.90 -12.90      -2.01 R

b)

Regression Analysis: W versus R

Analysis of Variance

Source      DF Adj SS Adj MS F-Value P-Value
Regression   1   518.8 518.76     5.96    0.031
R          1   518.8 518.76     5.96    0.031
Error       12 1045.0   87.08
Total       13 1563.7


Model Summary

      S    R-sq R-sq(adj) R-sq(pred)
9.33163 33.18%     27.61%      17.50%


Coefficients

Term        Coef SE Coef T-Value P-Value   VIF
Constant    -6.9     36.6    -0.19    0.854
R         0.1235   0.0506     2.44    0.031 1.00


Regression Equation

W = -6.9 + 0.1235 R

c)

Regression Analysis: W versus AVG

Analysis of Variance

Source         DF   Adj SS Adj MS F-Value P-Value
Regression      1    13.58   13.58     0.11    0.751
AVG           1    13.58   13.58     0.11    0.751
Error          12 1550.14 129.18
Lack-of-Fit 10 1281.14 128.11     0.95    0.614
Pure Error    2   269.00 134.50
Total          13 1563.71


Model Summary

      S   R-sq R-sq(adj) R-sq(pred)
11.3657 0.87%      0.00%       0.00%


Coefficients

Term      Coef SE Coef T-Value P-Value   VIF
Constant 62.2     61.4     1.01    0.331
AVG         78      240     0.32    0.751 1.00


Regression Equation

W = 62.2 + 78 AVG

d)

Regression Analysis: W versus OBP

Analysis of Variance

Source         DF Adj SS Adj MS F-Value P-Value
Regression      1   152.0   152.0     1.29    0.278
OBP           1   152.0   152.0     1.29    0.278
Error          12 1411.7   117.6
Lack-of-Fit 11 1249.7   113.6     0.70    0.742
Pure Error    1   162.0   162.0
Total          13 1563.7


Model Summary

      S   R-sq R-sq(adj) R-sq(pred)
10.8463 9.72%      2.20%       0.00%


Coefficients

Term       Coef SE Coef T-Value P-Value   VIF
Constant -10.3     81.4    -0.13    0.901
OBP         289      254     1.14    0.278 1.00


Regression Equation

W = -10.3 + 289 OBP