3. The recent average starting salary for new college graduates in computer info
ID: 3274349 • Letter: 3
Question
3. The recent average starting salary for new college graduates in computer information systems is $47,500. Assume salaries are normally distributed with a standard deviation of $4,500.
PLEASE SHOW WORK AND FORMULAS USED. EXCEL, ETC
a. What is the probability of a new graduate receiving a salary between $45,000 and $50,000?
b. What is the probability of a new graduate getting a starting salary in excess of $50,000?
c. What percent of starting salaries are no more than $42,250?
d. What is the cutoff for the bottom 5% of the salaries?
e. What is the cutoff for the top 3% of salaries?
Explanation / Answer
Answer:
We are given
Mean = µ = 47500
Population SD = = 4500
Salaries follow normal distribution.
Z score formula is given as below:
Z = (X - µ)/
a. What is the probability of a new graduate receiving a salary between $45,000 and $50,000?
Solution:
We have to find P(45000<X<50000)
P(45000<X<50000) = P(X<50000) – P(X<45000)
For X<50000
Z = (50000 – 47500)/4500 = 0.555556
P(X<50000) = P(Z< 0.555556) = 0.710743
For X<45000
Z = (45000 – 47500)/4500 = -0.55556
P(X<45000) = P(Z< -0.55556) = 0.289257
P(45000<X<50000) = P(X<50000) – P(X<45000)
P(45000<X<50000) = 0.710743 - 0.289257 = 0.421485
Required probability = 0.421485
b. What is the probability of a new graduate getting a starting salary in excess of $50,000?
Solution:
We have to find P(X>50000)
P(X>50000) = 1 – P(X<50000)
For X<50000
Z = (50000 – 47500)/4500 = 0.555556
P(X<50000) = P(Z< 0.555556) = 0.710743
P(X>50000) = 1 – P(X<50000)
P(X>50000) = 1 – 0.710743
P(X>50000) = 0.289257
Required probability = 0.289257
c. What percent of starting salaries are no more than $42,250?
Solution:
We have to find P(X<42250)
Z = (42250 – 47500)/4500 = -1.16667
P(X<42250) = P(Z< -1.16667) = 0.121673
Required probability = 0.121673
d. What is the cutoff for the bottom 5% of the salaries?
Solution:
X = µ + Z*
Z for bottom 5% = -1.64485
X = µ + Z*
X = 47500 + (-1.64485)*4500
X = 47500 – 1.64485*4500 = 40098.18
Required cutoff salary = $40098.16
e. What is the cutoff for the top 3% of salaries?
Solution:
X = µ + Z*
Z for top 3% = 1.880794
X = 47500 + 1.880794*4500 = 55963.57
Required cutoff salary = $55963.57
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.