The following table is copied from ‘Assign#4_MTB2304_SS17_V14.MTW’ or ‘Assign#4_
ID: 3263428 • Letter: T
Question
The following table is copied from ‘Assign#4_MTB2304_SS17_V14.MTW’ or ‘Assign#4_MTB2304_SS17_V17.MTW’.
SPrice SqFt NumFlrs BdRms Baths
345.0 12 1 4 1.50
157.0 16 1 4 2.00
592.5 20 1 4 3.00
520.0 22 1 6 3.00
582.5 20 1 6 3.00
607.5 20 1 6 3.00
625.0 22 1 6 3.00
640.0 30 2 6 3.75
649.5 26 1 6 2.55
665.0 26 2 6 3.75
675.0 26 2 6 3.75
687.5 30 2 6 3.75
699.5 26 1 6 3.00
719.5 28 2 6 3.75
739.5 34 2 6 3.75
774.5 30 2 6 3.75
800.0 38 2 6 3.00
845.0 30 1 6 3.00
849.5 36 1 6 3.00
625.0 26 1 8 3.00
674.5 26 1 8 3.00
699.5 34 1 8 3.00
735.0 36 1 8 3.00
795.0 28 1 8 3.00
849.5 34 2 8 4.50
894.5 38 1 8 3.00
972.5 40 2 8 4.50
1099.5 42 1 8 3.75
1345.0 50 2 8 4.50
Explanation / Answer
a)
Regression Analysis: SPrice versus SqFt
Analysis of Variance
Model Summary
Coefficients
Regression Equation
Fits and Diagnostics for Unusual Observations
R Large residual
X Unusual X
Regression Analysis: SPrice versus NumFlrs
Analysis of Variance
Model Summary
Coefficients
Regression Equation
Fits and Diagnostics for Unusual Observations
Regression Analysis: SPrice versus BdRms
Analysis of Variance
Model Summary
Coefficients
Regression Equation
Fits and Diagnostics for Unusual Observations
Regression Analysis: SPrice versus Baths
Analysis of Variance
Model Summary
Coefficients
Regression Equation
Fits and Diagnostics for Unusual Observations
model R^2_adj
1 0.8145
2 0.0712
3 0.4331
4 0.4815
1 > 4 > 3 > 2
b)
Regression Analysis: SPrice versus SqFt, NumFlrs, BdRms, Baths
Analysis of Variance
Model Summary
Coefficients
Regression Equation
Fits and Diagnostics for Unusual Observations
c)
R^2 = 0.876
R^2_adjusted = 0.8553
d)
if p-value is less than 0.05 ,the variacle is significant
b1, b2,b4 are significant
b0 abd b3 are nor not significant
e)
we remove varible 3 that is bedroom (not significant)
Regression Analysis: SPrice versus SqFt, NumFlrs, Baths
Analysis of Variance
Model Summary
Coefficients
Regression Equation
Fits and Diagnostics for Unusual Observations
f) R^2 = 0.8735 , R^2_adj = 0.8583
since R^2_adj (new) > R^2_adj (old) { 0.8583 > 0.8533
new model is best (after removing variable 3)
Source DF Adj SS Adj MS F-Value P-Value Regression 1 1048996 1048996 123.97 0.000 SqFt 1 1048996 1048996 123.97 0.000 Error 27 228463 8462 Lack-of-Fit 11 168547 15322 4.09 0.006 Pure Error 16 59916 3745 Total 28 1277459Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.