Question Help e below shows the overal scores and the coot per load for eight di
ID: 3261709 • Letter: Q
Question
Explanation / Answer
Part (a)
Claim: There is no correlation between x and y.[i.e., Spearman Rank Correlation Coefficient iszero.]
Part (b)
Given sample size is 8 and level of significance as 0.01, Critical value is the upper 0.5% [half of 0.01] of t6 i.e., t-distribution with 6 (i.e., n - 2) degrees of freedom.
Using Excel Function, the above value is found to be 3.707 ANSWER
Part (c)
Value of Spearman Rank Correlation Coefficient, rxy = 0.530 ANSWER
Formula for rxy = 1 – [{6[1,n](di2)}/{{n(n2 - 1)}] where
n = sample size, di = Rank(xi) – Rank(yi).
Computation details are given below:
i
xi
yi
Rx
Ry
di =Rx - Ry
di^2
1
17
68
6
2
4
16
2
14
79
4.5
6.5
-2
4
3
24
79
8
6.5
1.5
2.25
4
19
87
7
8
-1
1
5
5
73
1
4
-3
9
6
10
64
2
1
1
1
7
14
70
4.5
3
1.5
2.25
8
13
74
3
5
-2
4
n
8
sum(di^2)
39.5
alpha
0.01
6sumdi^2
237
n(n^2 - 1)
504
r
0.52976
r^2
0.28064
1 - r^2
0.71935
n - 2
6
(n-2)/(1-r^2)
8.34083
sqrt(n-2)/(1-r^2)
2.88805
t
1.52997
tcrit
3.70742
Part (d)
Decision
Since calculated value of t (1.530) < the critical value, the null hypothesis that correlation is zero is accepted.
Hence, the claim is valid at 1% level of significance. ANSWER
i
xi
yi
Rx
Ry
di =Rx - Ry
di^2
1
17
68
6
2
4
16
2
14
79
4.5
6.5
-2
4
3
24
79
8
6.5
1.5
2.25
4
19
87
7
8
-1
1
5
5
73
1
4
-3
9
6
10
64
2
1
1
1
7
14
70
4.5
3
1.5
2.25
8
13
74
3
5
-2
4
n
8
sum(di^2)
39.5
alpha
0.01
6sumdi^2
237
n(n^2 - 1)
504
r
0.52976
r^2
0.28064
1 - r^2
0.71935
n - 2
6
(n-2)/(1-r^2)
8.34083
sqrt(n-2)/(1-r^2)
2.88805
t
1.52997
tcrit
3.70742
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.