The worksheet “Data1” of the Excel file “MonthlyTravelDistance” shows the monthl
ID: 3255411 • Letter: T
Question
The worksheet “Data1” of the Excel file “MonthlyTravelDistance” shows the monthly distance traveled (in billion miles) by vehicles on urban highways for five consecutive years (Year 1 to Year 5).
Using Excel, plot a line chart or a scatter chart of the time series. What type of patterns can you identify in the data? Provide some details of these patterns.
Define 12 dummy variables corresponding to 12 months (Jan, Feb,…,Dec). Since the categorical variable Month has 12 levels (categories), delete the dummy variable Dec, to assume the linear regression model:
,
in which t = time period. See the worksheet “Data2”.
Run Regression to find the estimated regression equation:
Clearly show this equation.
Using your equation found in Task 2, make forecasts for the twelve months of Year 6. Provide details of your calculations. Are these forecasts consistent with the patterns you observed in Task 1?
To better prepare for the assignment, study pages 409 – 410 in the textbook, and pages 38 – 41, 43 in the slides. The studied examples refer to quarterly (rather than monthly) data, but the approach is very similar as discussed at the bottom of page 410.
Use Microsoft Word to write a managerial report with your name shown on the first page. (I will not accept, for example, pdf documents.) The report should include all your relevant Excel outputs (copy and paste them), so do not attach any separate Excel files
Distance Jan Feb Mar Apr May June July Aug Sep Oct Nov Time 4.22 1 0 0 0 0 0 0 0 0 0 0 1 5.32 0 1 0 0 0 0 0 0 0 0 0 2 5.21 0 0 1 0 0 0 0 0 0 0 0 3 5.12 0 0 0 1 0 0 0 0 0 0 0 4 4.92 0 0 0 0 1 0 0 0 0 0 0 5 4.49 0 0 0 0 0 1 0 0 0 0 0 6 4.55 0 0 0 0 0 0 1 0 0 0 0 7 4.49 0 0 0 0 0 0 0 1 0 0 0 8 4.44 0 0 0 0 0 0 0 0 1 0 0 9 4.39 0 0 0 0 0 0 0 0 0 1 0 10 4.37 0 0 0 0 0 0 0 0 0 0 1 11 4.35 0 0 0 0 0 0 0 0 0 0 0 12 4.31 1 0 0 0 0 0 0 0 0 0 0 13 5.44 0 1 0 0 0 0 0 0 0 0 0 14 5.34 0 0 1 0 0 0 0 0 0 0 0 15 5.24 0 0 0 1 0 0 0 0 0 0 0 16 4.98 0 0 0 0 1 0 0 0 0 0 0 17 4.59 0 0 0 0 0 1 0 0 0 0 0 18 4.68 0 0 0 0 0 0 1 0 0 0 0 19 4.65 0 0 0 0 0 0 0 1 0 0 0 20 4.61 0 0 0 0 0 0 0 0 1 0 0 21 4.68 0 0 0 0 0 0 0 0 0 1 0 22 4.74 0 0 0 0 0 0 0 0 0 0 1 23 4.79 0 0 0 0 0 0 0 0 0 0 0 24 4.38 1 0 0 0 0 0 0 0 0 0 0 25 5.51 0 1 0 0 0 0 0 0 0 0 0 26 5.41 0 0 1 0 0 0 0 0 0 0 0 27 5.36 0 0 0 1 0 0 0 0 0 0 0 28 4.98 0 0 0 0 1 0 0 0 0 0 0 29 4.63 0 0 0 0 0 1 0 0 0 0 0 30 4.71 0 0 0 0 0 0 1 0 0 0 0 31 4.78 0 0 0 0 0 0 0 1 0 0 0 32 4.82 0 0 0 0 0 0 0 0 1 0 0 33 4.88 0 0 0 0 0 0 0 0 0 1 0 34 4.85 0 0 0 0 0 0 0 0 0 0 1 35 4.89 0 0 0 0 0 0 0 0 0 0 0 36 4.45 1 0 0 0 0 0 0 0 0 0 0 37 5.59 0 1 0 0 0 0 0 0 0 0 0 38 5.5 0 0 1 0 0 0 0 0 0 0 0 39 5.41 0 0 0 1 0 0 0 0 0 0 0 40 5.01 0 0 0 0 1 0 0 0 0 0 0 41 4.72 0 0 0 0 0 1 0 0 0 0 0 42 4.78 0 0 0 0 0 0 1 0 0 0 0 43 4.79 0 0 0 0 0 0 0 1 0 0 0 44 4.82 0 0 0 0 0 0 0 0 1 0 0 45 4.92 0 0 0 0 0 0 0 0 0 1 0 46 5.06 0 0 0 0 0 0 0 0 0 0 1 47 5.11 0 0 0 0 0 0 0 0 0 0 0 48 4.51 1 0 0 0 0 0 0 0 0 0 0 49 5.65 0 1 0 0 0 0 0 0 0 0 0 50 5.62 0 0 1 0 0 0 0 0 0 0 0 51 5.49 0 0 0 1 0 0 0 0 0 0 0 52 5.12 0 0 0 0 1 0 0 0 0 0 0 53 4.8 0 0 0 0 0 1 0 0 0 0 0 54 4.88 0 0 0 0 0 0 1 0 0 0 0 55 4.82 0 0 0 0 0 0 0 1 0 0 0 56 4.95 0 0 0 0 0 0 0 0 1 0 0 57 5.12 0 0 0 0 0 0 0 0 0 1 0 58 5.22 0 0 0 0 0 0 0 0 0 0 1 59 5.44 0 0 0 0 0 0 0 0 0 0 0 60Explanation / Answer
Answer:
Regression Analysis
R²
0.939
Adjusted R²
0.924
n
60
R
0.969
k
12
Std. Error
0.104
Dep. Var.
Distance
ANOVA table
Source
SS
df
MS
F
p-value
Regression
7.8952
12
0.6579
60.38
2.21E-24
Residual
0.5121
47
0.0109
Total
8.4073
59
Regression output
confidence interval
variables
coefficients
std. error
t (df=47)
p-value
95% lower
95% upper
Intercept
4.5758
0.0547
83.591
8.90E-53
4.4656
4.6859
Jan
-0.4380
0.0666
-6.578
3.58E-08
-0.5720
-0.3041
Feb
0.6805
0.0665
10.234
1.51E-13
0.5467
0.8143
Mar
0.5851
0.0664
8.811
1.62E-11
0.4515
0.7187
Apr
0.4836
0.0663
7.292
2.96E-09
0.3502
0.6170
May
0.1522
0.0663
2.297
.0261
0.0189
0.2854
June
-0.2133
0.0662
-3.222
.0023
-0.3464
-0.0801
July
-0.1487
0.0661
-2.249
.0292
-0.2818
-0.0157
Aug
-0.1722
0.0661
-2.605
.0123
-0.3052
-0.0392
Sep
-0.1596
0.0661
-2.417
.0196
-0.2925
-0.0267
Oct
-0.0991
0.0660
-1.501
.1401
-0.2319
0.0338
Nov
-0.0585
0.0660
-0.887
.3797
-0.1914
0.0743
Time
0.0095
0.0008
11.902
8.68E-16
0.0079
0.0110
Regression Equation
Distance = 4.5758 - 0.4380 Jan + 0.6805 Feb + 0.5851 Mar + 0.4836 Apr + 0.1522 May
- 0.2133 June - 0.1487 July - 0.1722 Aug - 0.1596 Sep - 0.0991 Oct - 0.0585 Nov
+ 0.009451 Time
Prediction for Jan, year 6,
Predicted Distance = 4.5758 - 0.4380 *1 + 0.6805 *0 + 0.5851 *0 + 0.4836 *0 + 0.1522 *0
- 0.2133 *0 - 0.1487 *0 - 0.1722 *0 - 0.1596 *0 - 0.0991 *0 - 0.0585 *0
+ 0.009451 *61
=4.714
Similarly prediction for other months are calculated.
95% Confidence Intervals
95% Prediction Intervals
Year 6
Time
Predicted
lower
upper
lower
upper
Jan
61
4.714
4.60413
4.82437
4.47713
4.95137
Feb
62
5.842
5.73213
5.95237
5.60513
6.07937
Mar
63
5.756
5.64613
5.86637
5.51913
5.99337
Apr
64
5.664
5.55413
5.77437
5.42713
5.90137
May
65
5.342
5.23213
5.45237
5.10513
5.57937
June
66
4.986
4.87613
5.09637
4.74913
5.22337
July
67
5.060
4.95013
5.17037
4.82313
5.29737
Aug
68
5.046
4.93613
5.15637
4.80913
5.28337
Sep
69
5.068
4.95813
5.17837
4.83113
5.30537
Oct
70
5.138
5.02813
5.24837
4.90113
5.37537
Nov
71
5.188
5.07813
5.29837
4.95113
5.42537
Dec
72
5.256
5.14613
5.36637
5.01913
5.49337
Regression Analysis
R²
0.939
Adjusted R²
0.924
n
60
R
0.969
k
12
Std. Error
0.104
Dep. Var.
Distance
ANOVA table
Source
SS
df
MS
F
p-value
Regression
7.8952
12
0.6579
60.38
2.21E-24
Residual
0.5121
47
0.0109
Total
8.4073
59
Regression output
confidence interval
variables
coefficients
std. error
t (df=47)
p-value
95% lower
95% upper
Intercept
4.5758
0.0547
83.591
8.90E-53
4.4656
4.6859
Jan
-0.4380
0.0666
-6.578
3.58E-08
-0.5720
-0.3041
Feb
0.6805
0.0665
10.234
1.51E-13
0.5467
0.8143
Mar
0.5851
0.0664
8.811
1.62E-11
0.4515
0.7187
Apr
0.4836
0.0663
7.292
2.96E-09
0.3502
0.6170
May
0.1522
0.0663
2.297
.0261
0.0189
0.2854
June
-0.2133
0.0662
-3.222
.0023
-0.3464
-0.0801
July
-0.1487
0.0661
-2.249
.0292
-0.2818
-0.0157
Aug
-0.1722
0.0661
-2.605
.0123
-0.3052
-0.0392
Sep
-0.1596
0.0661
-2.417
.0196
-0.2925
-0.0267
Oct
-0.0991
0.0660
-1.501
.1401
-0.2319
0.0338
Nov
-0.0585
0.0660
-0.887
.3797
-0.1914
0.0743
Time
0.0095
0.0008
11.902
8.68E-16
0.0079
0.0110
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.