Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

An article in the Journal of the American Medical Assocation described an experi

ID: 3249822 • Letter: A

Question

An article in the Journal of the American Medical Assocation described an experiment to investigate the effect of four treatments on various body characteristics. In this double-blind experiment, each of 63 female subjects age 65 or older was assigned at random to one of the following four treatments:

1) P + P: placebo "growth hormone" and placebo "steroid"
2) P + S: placebo "growth hormone" and the steroid estradiol
3) G + P: growth hormone and placebo "steroid"
4) G + S: growth hormone and the steroid estradiol

The change in body fat mass was measured over the 26-week period following the treatments. Using the information provided above and in the partial table below, complete the ANOVA table (use 2 decimals for your SS, MS, and F value answers).

Source of Variation df Sum of Squares Mean Square F Treatment Error 1.63 X Total 216.73 X X

Explanation / Answer

63 female subjects each was assigned at random to one the four treatments

Number of treatments = 4

Total sample size = 63

Degrees of freedom for Total = Total sample size -1 = 63-1 = 62

Degrees of freedom for Treatment = Number of treatments - 1 = 4-1=3

Degrees of freedom for error = Degrees of freedom for Total - Degrees of freedom for Treatment =62 - 3 =59

Given,

Mean sum of squares for error = 1.63

Mean sum of squares of error = Sum of squares of error / Degrees of freedom for error

Sum of Squares for Error = Mean sum of squares of error x Degrees of freedom for error = 1.63 x 59 = 96.17

Given

Sum of Squares for Total = 216.73

Sum of Squares for Treatment = Sum of Squares for Total - Sum of Squares for Error = 216.73 - 96.17=120.56

Mean sum of squares for treatment = Sum of squares of Tretment / Degrees of freedom for Treatment = 120.56/3 =40.19

Statisitc F = Mean sum of squares for treatment / Mean sum of squares for error = 40.19/1.63 = 24.65

Source of Variation df Sum of Squares Mean Square F Treatment 3 120.56 40.19 24.65 Error 59 96.17 1.63 X Total 62 216.73 X X
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote