Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The following data is representative of that reported in an article on nitrogen

ID: 3230321 • Letter: T

Question

The following data is representative of that reported in an article on nitrogen emissions, with x = burner area liberation rate (MBtu/hr-ft^2) and y = NO_x. emission rate (ppm): (a) Assuming that the simple linear regression model is valid, obtain the least squares estimate of the true regression line. (Round all numerical values to four decimal places.) y = ______ (b) What is the estimate of expected NO_x emission rate when burner area liberation rate equals 235? (Round your answer to two decanal places.) ______ ppm (c) Estimate the amount by winch you expect NO_x. emission rate to change when burner area liberation rate is decreased by 50. ______ ppm (d) Would you use the estimated regression line to predict emission rate for a liberation rate of 500? Why or why not? Yes, the data n perfectly linear, thus lending to accurate predictions. Yes, this value is between two existing values. No, this value is too far away from the known values for useful extrapolation. No. the data near this point deviates from the overall regression model.

Explanation / Answer

X

Y

XY

X2

100

160

1600

10000

125

140

17500

15625

125

170

21250

12525

150

210

31500

22500

150

180

27000

22500

200

320

64000

40000

200

270

54000

40000

250

390

97500

62500

250

440

1100000

62500

300

430

129000

90000

300

380

114000

90000

350

590

206500

122500

400

620

248000

160000

400

680

272000

160000

3300

4980

1408250

913750

m = ( n xy – (x).(y)) / nx2 –(x)2

= (14 *1408250 – 3300*4980) / 14*913750 –(3300*3300)

=(19715500 -1643400) /(12792500 – 10890000)

=1.724836

b= (y –m(x)) /n

= (4980 -1.724836*3300) /14

=-50.8541

The linear regression => y=mx +b

                                    y = 1.724836x – 50.8541

b). when liberation rate x= 235

                                    y=1.724836(235) -50.8541

                                    = 354.48236

c) Expect NO emission rate to change when burner area liberation rate is decreased by 50

=-50m

=-50*1.724836.

=-86.2418 ( - indicate decreased value)

=86.2418

d). 500 is not within the range, so option c is correct

No, this value is too far away from the known values for useful extrapolation

X

Y

XY

X2

100

160

1600

10000

125

140

17500

15625

125

170

21250

12525

150

210

31500

22500

150

180

27000

22500

200

320

64000

40000

200

270

54000

40000

250

390

97500

62500

250

440

1100000

62500

300

430

129000

90000

300

380

114000

90000

350

590

206500

122500

400

620

248000

160000

400

680

272000

160000

3300

4980

1408250

913750

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote