Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Hypothesis testing help You have been monitoring your 20 new slot machines for s

ID: 3229056 • Letter: H

Question

Hypothesis testing help

You have been monitoring your 20 new slot machines for several months and have come up with an updated sample mean that they on average make the casino $2, 750 per month with a standard deviation of $225. IGT sends you an email indicating that they have developed a new game that they claim will make your casino even more $, and are willing to lend you 40 of the new machines to test out for 1 month. You decide to take the new machines, collect 1 months worth of data and perform a hypothesis test using an alpha = 0.05 to help decide whether or not to recommend your boss invest in the new machines. What type of test would you perform? One Sided/Tailed Two Sided/Tailed One Sample Matched Sample/Paired Sample Two Independent Sample z-test t-test State H_0 and H_A Null Hypothesis: ____ Alternative Hypothesis: ____ You collect the data and find that the new machines made on average $2, 850 with a standard deviation of $175. How many degrees of freedom should you use? df = What value does your test statistic take? What is the probability that H_0 is true? Would you reject, or fail to reject H_0? Fail to Reject Reject Why?

Explanation / Answer

29. here n=40 , sine n > 30 so we can use Z-test distribution

30. given mean =2750

Null hypothesis

            Ho:µ = 2750

Alternative hypothesis

            HA:µ > 2750

31degrees of freedom df =n-1 =40-1 =39

32 X^bar =2850

            µ =2750 = 175 n=40

            Z=(X^bar –) /(/sqrt.n )

            Z=(2850-2750) /(175/sqrt40 )

            =3.6140

33.P- value = 1-P(Z=3.6140)

                        =1-0.999849

                        =0.000151

34.P<0.05 , so we reject the null hypothesis (Ho)