Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

weight age Height annual salary (in 1000) years of education # people you superv

ID: 3224631 • Letter: W

Question

weight

age

Height

annual salary (in 1000)

years of education

# people you supervise

age at birth of first child

Internet usage

116

18

63

18

12

2

16

20

116

19

65

29

13

5

18

18

117

18

64

14

12

0

17

18

120

18

68

20

13

0

16

19

120

19

65

22

14

1

17

17

130

20

65

25

14

10

20

16

130

22

66

38

15

20

20

14

130

25

66

50

18

0

25

12

130

42

66

80

21

56

32

2

132

20

67

27

14

2

19

15

135

27

70

40

18

1

21

11

136

28

69

48

18

1

20

10

137

29

69

45

19

25

25

9

137

30

69

50

19

0

28

8

138

30

70

65

20

40

30

8

139

34

70

67

22

0

30

0

140

21

70

30

15

6

20

14

148

25

65

48

16

30

22

13

149

35

71

150

22

300

35

17

149

40

71

80

20

45

30

4

150

21

69

35

15

0

17

8

152

41

72

95

21

98

31

3

160

40

72

66

20

0

38

5

160

45

68

70

22

75

40

0

170

45

73

150

22

267

41

0

less than 0.90

Explanation / Answer

Minitab Output:

Regression Analysis: annual salar versus weight, age, Height, years of edu, people you s, ...

Analysis of Variance

Source                         DF   Adj SS   Adj MS F-Value P-Value
Regression                      7 30169.5 4309.92    88.83    0.000
weight                        1      3.8     3.76     0.08    0.784
age                           1     40.3    40.26     0.83    0.375
Height                        1     57.7    57.68     1.19    0.291
years of education            1    263.2   263.23     5.43    0.032
people you supervise          1   4179.9 4179.88    86.15    0.000
age at birth of first child   1      3.3     3.26     0.07    0.799
Internet usage                1      2.8     2.82     0.06    0.812
Error                          17    824.8    48.52
Total                          24 30994.2


Model Summary

      S        R-sq    R-sq(adj) R-sq(pred)
6.96542 97.34%     96.24%      92.51%


Coefficients

Term                           Coef SE Coef T-Value P-Value    VIF
Constant                      -81.8     54.3    -1.51    0.150
weight                       -0.061    0.218    -0.28    0.784   4.95
age                           0.606    0.666     0.91    0.375 18.84
Height                        0.997    0.914     1.09    0.291   3.18
years of education             3.10     1.33     2.33    0.032 10.48
people you supervise         0.2957   0.0319     9.28    0.000   3.07
age at birth of first child -0.171    0.660    -0.26    0.799 13.30
Internet usage               -0.162    0.672    -0.24    0.812   9.26


Regression Equation

annual salary (in 1000) = -81.8 - 0.061 weight + 0.606 age + 0.997 Height
                          + 3.10 years of education + 0.2957 people you supervise
                          - 0.171 age at birth of first child - 0.162 Internet usage

From above output R square is 97.34% which is more than 96.

Hope this will be helpful. Thanks and god Bless You :-):-)