Fit a multiple linear regression model with all variables to predict student hei
ID: 3224605 • Letter: F
Question
Fit a multiple linear regression model with all variables to predict student heights. What model would you finally report?
Student Height Father Height Mother Height Paternal Grandfather Height Paternal Grandmother Height Maternal Grandfather Height Maternal Grandmother Height Gender 75 70 70 72 63 71 69 M 75 72 69 65 62 77 64 M 63 68 66 70 68 74 62 F 70 72 67 69 67 69 65 F 67 70 64 67 63 66 63 F 70 72 64 74 62 67 64 M 75 74 67 72 60 70 63 M 69 65 63 66 60 70 63 M 60 67 62 72 65 69 64 F 70 78 62 72 70 70 61 M 62 68 63 65 61 65 63 F 70 70 65 65 65 71 61 M 71 68 64 67 62 71 63 m 68 66 64 65 62 73 58 m 66 72 65 72 61 70 62 m 67 73 68 72 60 72 62 f 71 66 68 64 67 66 62 m 62 74 60 74 63 66 62 f 58 60 52 55 45 54 50 m 65 72 66 70 62 67 63 f 64 72 60 68 60 67 64 f 69 74 66 74 66 74 69 f 70 69 64 68 65 73 64 m 62 65 65 67 60 71 60 f 70 73 68 75 69 69 67 m 72 70 69 68 68 73 63 m 67 69 61 64 58 70 64 f 64 70 58 70 60 71 61 f 69 73 69 68 64 72 69 m 71 68 69 71 69 73 71 m 62 68 63 68 61 66 60 f 67 74 65 72 64 70 63 f 72 74 66 74 64 70 64 m 63 67 62 65 59 67 62 f 62 66 64 69 59 70 68 f 66 68 61 68 64 68 64 m 76 64 67 76 68 73 71 m 73 70 64 56 55 73 63 m 67 72 65 70 65 67 68 f 64 68 61 70 63 69 62 f 65 61 62 60 54 72 60 m 77 75 68 74 66 68 66 m 74 73 66 70 67 68 65 m 70 72 68 69 61 71 72 m 65 67 63 66 62 60 64 f 68 67 62 67 60 65 62 m 90 69 62 69 62 69 69 m 71 69 66 69 62 70 65 m 72 71 63 70 50 68 62 m 69 74 70 73 70 73 71 f 65 69 62 69 67 70 59 m 65 63 61 65 60 63 59 m 63 65 61 66 59 68 62 f 68 72 58 72 66 66 62 m 78 74 70 72 66 73 65 m 73 77 64 71 62 65 64 m 68 67 65 67 65 65 64 m 62 70 63 75 64 68 63 f 69 68 65 67 65 64 65 m 70 71 69 70 65 60 69 m 72 74 66 72 60 68 62 m 69 67 64 67 63 64 66 m 75 72 70 71 65 72 64 m 74 74 70 72 70 69 68 m 69 68 67 69 66 74 66 m 63 68 64 64 61 70 62 f 63 70 63 73 63 60 61 f 68 74 66 72 70 72 66 fExplanation / Answer
First of all we created dummy variable Female from the gender variables such that Female=1 if gender is female and Female=0 if gender is male
The results of multiple regression analysis are as follows from where we have the estimated regression model as follows:
Student Height = 4.201560118 + 0.387923793 Father Height + 0.139273003 Mother Height
-0.064060486 Paternal Grandfather Height
-0.099745271 Paternal Grandmother Height
+ 0.150008848 Maternal Grandfather Height
+ 0.482068125 Maternal Grandmother Height
-5.797208399 Female
SUMMARY OUTPUT Regression Statistics Multiple R 0.805108822 R Square 0.648200215 Adjusted R Square 0.607156907 Standard Error 3.229671408 Observations 68 ANOVA df SS MS F Significance F Regression 7 1153.13865 164.7340929 15.79307913 1.47829E-11 Residual 60 625.8466441 10.4307774 Total 67 1778.985294 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 4.201560118 10.07477678 0.417037539 0.678139331 -15.95099394 24.35411417 Father Height 0.387923793 0.14520772 2.671509423 0.009706521 0.097465106 0.678382479 Mother Height 0.139273003 0.183439473 0.759231374 0.450686746 -0.227660575 0.506206581 Paternal Grandfather Height -0.064060486 0.147098779 -0.435492984 0.664767314 -0.358301853 0.230180881 Paternal Grandmother Height -0.099745271 0.125906777 -0.792215274 0.431356318 -0.351596323 0.15210578 Maternal Grandfather Height 0.150008848 0.116450803 1.288173578 0.202631291 -0.08292744 0.382945137 Maternal Grandmother Height 0.482068125 0.156888099 3.072687652 0.003188295 0.168245202 0.795891048 Female -5.797208399 0.84419308 -6.867159348 4.21304E-09 -7.485845977 -4.10857082Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.