Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Use Minitab , R, or your preferred software for this question, but calculate the

ID: 3219310 • Letter: U

Question

Use Minitab, R, or your preferred software for this question, but calculate the 90% confidence interval for the coefficient for cable by hand (but use the SE from the software output) and do the test whether age and number of TVs should be dropped by hand (but use the ANVOA tables from software).

The data in the table below contains observations on age, sex (male = 0, female = 1), number of television sets in the household, cable (no = 0, yes = 1), and number of hours of television watched per week. Using hours of television watched per week as the response, you can use Minitab's Regress or R's lm() command [e.g., model <- lm(hours~age+sex+num.tv+cable)] to fit a least squares regression model to all the other given variables.

  

The estimated value of the regression coefficient for age= 0.1000

The estimated value of the regression coefficient for cable= 4.1980

The value of the test-statistic for the overall regression significance test is 12.6200

[Compute a 90% confidence interval for the coefficient for cable. Lower Bound:  Upper Bound:  [3 pt(s)]

Compute a 95% confidence interval for the mean number of hours watched by 18-year old females with cable and 2 TV sets. Lower Bound:  Upper Bound:  [3 pt(s)]

Compute a 95% prediction interval for the mean number of hours watched by 18-year old females with cable and 2 TV sets. Lower Bound:  Upper Bound:  [3 pt(s)]

Test whether age and number of TV sets are needed in the model or should be dropped. What is the value of the test-statistic?  [3 pt(s)]

What are the degrees of freedom associated with this test? Numerator:  Denominator:  [1 pt(s)]

Select the interval below that contains the p-value for this test.
p-value 0.001
0.001 < p-value 0.01
0.01 < p-value 0.05
0.05 < p-value 0.1
0.1 < p-value 0.25
p-value > 0.25
[3 pt(s)]

Age: 22,22,50,43,54,24,15,23,34,18,58,19,26,15,21,30,37,44,29,27,30,17,15,21,47,26,13,39,22,20,14,47,21,38,23,32,19,15,21,18 Sex: 0,0,1,1,0,1,0,1,1,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,1,1,1,1,0,0,1,1,1,0,1,0 Num. TV: 2,2,1,1,1,1,2,1,1,1,2,1,1,1,1,2,2,2,1,1,2,1,2,1,1,1,2,2,1,1,1,1,1,1,2,1,2,1,1,2 Cable: 1,0,1,1,1,0,1,0,1,0,1,0,0,0,0,0,1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0,0,1 Hours TV: 28,16,18,20,25,14,21,7,12,14,15,12,10,11,12,18,17,20,21,15,17,18,13,21,23,11,10,21,13,12,10,19,12,21,8,16,13,9,11,21

Explanation / Answer

The estimated value of the regression coefficient for age= 0.1000

The estimated value of the regression coefficient for cable= 4.1980

The Minitab output is shown below:

Regression Analysis: HoursTV versus Age, Sex, Num. TV, Cable

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 4 571.270 142.817 12.62 0.000

Age 1 45.259 45.259 4.00 0.053

Sex 1 115.765 115.765 10.23 0.003

Num. TV 1 6.375 6.375 0.56 0.458

Cable 1 134.331 134.331 11.87 0.001

Error 35 396.105 11.317

Lack-of-Fit 34 395.605 11.635 23.27 0.163

Pure Error 1 0.500 0.500

Total 39 967.375

Model Summary

S R-sq R-sq(adj) R-sq(pred)

3.36412 59.05% 54.37% 43.29%

Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 11.67 2.31 5.05 0.000

Age 0.1000 0.0500 2.00 0.053 1.25

Sex -3.58 1.12 -3.20 0.003 1.09

Num. TV 0.86 1.14 0.75 0.458 1.05

Cable 4.20 1.22 3.45 0.001 1.31

Regression Equation

HoursTV = 11.67 + 0.1000 Age - 3.58 Sex + 0.86 Num. TV + 4.20 Cable

Fits and Diagnostics for Unusual Observations

Obs HoursTV Fit Resid Std Resid

1 28.00 19.78 8.22 2.61 R

11 15.00 23.38 -8.38 -2.87 R

R Large residual

Coefficients

Term Coef SE Coef 90% CI T-Value P-Value VIF

Constant 11.67 2.31 ( 7.77, 15.57) 5.05 0.000

Age 0.1000 0.0500 (0.0155, 0.1845) 2.00 0.053 1.25

Sex -3.58 1.12 ( -5.47, -1.69) -3.20 0.003 1.09

Num. TV 0.86 1.14 ( -1.07, 2.79) 0.75 0.458 1.05

Cable 4.20 1.22 ( 2.14, 6.26) 3.45 0.001 1.31

Coefficients

Term Coef SE Coef 95% CI T-Value P-Value VIF

Constant 11.67 2.31 ( 6.98, 16.35) 5.05 0.000

Age 0.1000 0.0500 (-0.0015, 0.2015) 2.00 0.053 1.25

Sex -3.58 1.12 ( -5.85, -1.31) -3.20 0.003 1.09

Num. TV 0.86 1.14 ( -1.46, 3.18) 0.75 0.458 1.05

Cable 4.20 1.22 ( 1.72, 6.67) 3.45 0.001 1.31

The value of the test-statistic for the overall regression significance test is 12.6200

What are the degrees of freedom associated with the test-statistic?

Numerator:  4

Denominator:  35

[Compute a 90% confidence interval for the coefficient for cable.

Lower Bound:  2.14

Upper Bound:  6.26

Compute a 95% confidence interval for the mean number of hours watched by 18-year old females with cable and 2 TV sets.

Prediction for HoursTV

Regression Equation

HoursTV = 11.67 + 0.1000 Age - 3.58 Sex + 0.86 Num. TV + 4.20 Cable

Variable Setting

Age 18

Sex 1

Num. TV 2

Cable 1

Fit SE Fit 95% CI 95% PI

15.8056 1.41557 (12.9318, 18.6793) (8.39604, 23.2151)

Lower Bound:  12.9318

Upper Bound:  18.6793

Compute a 95% prediction interval for the mean number of hours watched by 18-year old females with cable and 2 TV sets.

Lower Bound:  8.39604

Upper Bound:  23.2151

Test whether age and number of TV sets are needed in the model or should be dropped. What is the value of the test-statistic?

For Age, t=2.00 and for number of TV sets, t=0.75. p-value for both are greater than 0.05, age and number of TV sets in the model should be dropped.

Regression Analysis: HoursTV versus Sex, Cable

Analysis of Variance

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value

Regression 2 522.39 54.00% 522.39 261.19 21.72 0.000

Sex 1 260.16 26.89% 135.47 135.47 11.26 0.002

Cable 1 262.23 27.11% 262.23 262.23 21.80 0.000

Error 37 444.99 46.00% 444.99 12.03

Lack-of-Fit 1 30.93 3.20% 30.93 30.93 2.69 0.110

Pure Error 36 414.06 42.80% 414.06 11.50

Total 39 967.38 100.00%

Model Summary

S R-sq R-sq(adj) PRESS R-sq(pred)

3.46795 54.00% 51.51% 524.393 45.79%

Coefficients

Term Coef SE Coef 90% CI T-Value P-Value VIF

Constant 15.21 1.07 (13.40, 17.02) 14.20 0.000

Sex -3.82 1.14 (-5.74, -1.90) -3.36 0.002 1.06

Cable 5.29 1.13 ( 3.38, 7.20) 4.67 0.000 1.06

Regression Equation

HoursTV = 15.21 - 3.82 Sex + 5.29 Cable

Fits and Diagnostics for Unusual Observations

Std Del

Obs HoursTV Fit SE Fit 90% CI Resid Resid Resid HI Cook’s D DFITS

1 28.000 20.502 0.929 (18.935, 22.069) 7.498 2.24 2.38 0.0716981 0.13 0.661856 R

R Large residual

What are the degrees of freedom associated with this test?

Numerator:  2

Denominator:  37

Select the interval below that contains the p-value for this test.
p-value 0.001

The Minitab output is shown below:

Regression Analysis: HoursTV versus Age, Sex, Num. TV, Cable

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 4 571.270 142.817 12.62 0.000

Age 1 45.259 45.259 4.00 0.053

Sex 1 115.765 115.765 10.23 0.003

Num. TV 1 6.375 6.375 0.56 0.458

Cable 1 134.331 134.331 11.87 0.001

Error 35 396.105 11.317

Lack-of-Fit 34 395.605 11.635 23.27 0.163

Pure Error 1 0.500 0.500

Total 39 967.375

Model Summary

S R-sq R-sq(adj) R-sq(pred)

3.36412 59.05% 54.37% 43.29%

Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 11.67 2.31 5.05 0.000

Age 0.1000 0.0500 2.00 0.053 1.25

Sex -3.58 1.12 -3.20 0.003 1.09

Num. TV 0.86 1.14 0.75 0.458 1.05

Cable 4.20 1.22 3.45 0.001 1.31

Regression Equation

HoursTV = 11.67 + 0.1000 Age - 3.58 Sex + 0.86 Num. TV + 4.20 Cable

Fits and Diagnostics for Unusual Observations

Obs HoursTV Fit Resid Std Resid

1 28.00 19.78 8.22 2.61 R

11 15.00 23.38 -8.38 -2.87 R

R Large residual

Coefficients

Term Coef SE Coef 90% CI T-Value P-Value VIF

Constant 11.67 2.31 ( 7.77, 15.57) 5.05 0.000

Age 0.1000 0.0500 (0.0155, 0.1845) 2.00 0.053 1.25

Sex -3.58 1.12 ( -5.47, -1.69) -3.20 0.003 1.09

Num. TV 0.86 1.14 ( -1.07, 2.79) 0.75 0.458 1.05

Cable 4.20 1.22 ( 2.14, 6.26) 3.45 0.001 1.31

Coefficients

Term Coef SE Coef 95% CI T-Value P-Value VIF

Constant 11.67 2.31 ( 6.98, 16.35) 5.05 0.000

Age 0.1000 0.0500 (-0.0015, 0.2015) 2.00 0.053 1.25

Sex -3.58 1.12 ( -5.85, -1.31) -3.20 0.003 1.09

Num. TV 0.86 1.14 ( -1.46, 3.18) 0.75 0.458 1.05

Cable 4.20 1.22 ( 1.72, 6.67) 3.45 0.001 1.31

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at drjack9650@gmail.com
Chat Now And Get Quote