Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

USE R - STUDIO TO SOLVE. What proportion of times did the confidence intervals m

ID: 3219011 • Letter: U

Question

USE R - STUDIO TO SOLVE.

What proportion of times did the confidence intervals miss the true mean? using a simulation to answer the question. In your simulation, draw N=10^5 random samples (of size n=20) from the right-skewed Gamma distribution Gamma(5, 2) with parameters r=5 and lambda=2. Use also q = qt(0.975, n-1) to determine Upper and Lower limit of the interval. Count the number of times the 95% confidence interval misses the mean mu=5/2 on each side. Repeat this simulation by changing the sample size, n=30, n=60, n=100, and n=250. How does the sample size affect the relative frequency(e.g.) counterTooLow/N of missing the mu?

Explanation / Answer

The complete R program is given below:

N <- 1e5
# (a)
n <- 20
gamma_samples <- matrix(0,nrow=N,ncol=n)
for(i in 1:N) gamma_samples[i,] <- rgamma(n,5,2)
LL <- qt(0.025,n-1)
UL <- qt(0.975,n-1)
# (b)
sim_mean <- rowMeans(gamma_samples)
sum(sim_mean<LL)
sum(sim_mean>UL)
sum(sim_mean<LL)/N

# (c)
n <- 30
gamma_samples <- matrix(0,nrow=N,ncol=n)
for(i in 1:N) gamma_samples[i,] <- rgamma(n,5,2)
LL <- qt(0.025,n-1)
UL <- qt(0.975,n-1)
# (b)
sim_mean <- rowMeans(gamma_samples)
sum(sim_mean<LL)
sum(sim_mean>UL)
sum(sim_mean<LL)/N

n <- 60
gamma_samples <- matrix(0,nrow=N,ncol=n)
for(i in 1:N) gamma_samples[i,] <- rgamma(n,5,2)
LL <- qt(0.025,n-1)
UL <- qt(0.975,n-1)
# (b)
sim_mean <- rowMeans(gamma_samples)
sum(sim_mean<LL)
sum(sim_mean>UL)
sum(sim_mean<LL)/N


n <- 100
gamma_samples <- matrix(0,nrow=N,ncol=n)
for(i in 1:N) gamma_samples[i,] <- rgamma(n,5,2)
LL <- qt(0.025,n-1)
UL <- qt(0.975,n-1)
# (b)
sim_mean <- rowMeans(gamma_samples)
sum(sim_mean<LL)
sum(sim_mean>UL)
sum(sim_mean<LL)/N

n <- 250
gamma_samples <- matrix(0,nrow=N,ncol=n)
for(i in 1:N) gamma_samples[i,] <- rgamma(n,5,2)
LL <- qt(0.025,n-1)
UL <- qt(0.975,n-1)
# (b)
sim_mean <- rowMeans(gamma_samples)
sum(sim_mean<LL)
sum(sim_mean>UL)
sum(sim_mean<LL)/N

The output of a typical session is now given below:

>

  > N <- 1e5  > # (a)  > n <- 20  > gamma_samples <- matrix(0,nrow=N,ncol=n)  > for(i in 1:N) gamma_samples[i,] <- rgamma(n,5,2)  > LL <- qt(0.025,n-1)  > UL <- qt(0.975,n-1)  > # (b)  > sim_mean <- rowMeans(gamma_samples)  > sum(sim_mean<LL)  [1] 0  > sum(sim_mean>UL)  [1] 95413  > sum(sim_mean<LL)/N  [1] 0  >   > # (c)  > n <- 30  > gamma_samples <- matrix(0,nrow=N,ncol=n)  > for(i in 1:N) gamma_samples[i,] <- rgamma(n,5,2)  > LL <- qt(0.025,n-1)  > UL <- qt(0.975,n-1)  > # (b)  > sim_mean <- rowMeans(gamma_samples)  > sum(sim_mean<LL)  [1] 0  > sum(sim_mean>UL)  [1] 99127  > sum(sim_mean<LL)/N  [1] 0  >   > n <- 60  > gamma_samples <- matrix(0,nrow=N,ncol=n)  > for(i in 1:N) gamma_samples[i,] <- rgamma(n,5,2)  > LL <- qt(0.025,n-1)  > UL <- qt(0.975,n-1)  > # (b)  > sim_mean <- rowMeans(gamma_samples)  > sum(sim_mean<LL)  [1] 0  > sum(sim_mean>UL)  [1] 99990  > sum(sim_mean<LL)/N  [1] 0  >   >   > n <- 100  > gamma_samples <- matrix(0,nrow=N,ncol=n)  > for(i in 1:N) gamma_samples[i,] <- rgamma(n,5,2)  > LL <- qt(0.025,n-1)  > UL <- qt(0.975,n-1)  > # (b)  > sim_mean <- rowMeans(gamma_samples)  > sum(sim_mean<LL)  [1] 0  > sum(sim_mean>UL)  [1] 100000  > sum(sim_mean<LL)/N  [1] 0  >   > n <- 250  > gamma_samples <- matrix(0,nrow=N,ncol=n)  > for(i in 1:N) gamma_samples[i,] <- rgamma(n,5,2)  > LL <- qt(0.025,n-1)  > UL <- qt(0.975,n-1)  > # (b)  > sim_mean <- rowMeans(gamma_samples)  > sum(sim_mean<LL)  [1] 0  > sum(sim_mean>UL)  [1] 100000  > sum(sim_mean<LL)/N  [1] 0  

>