Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

2) What are the important variables that predict Crime rate? How did you identif

ID: 3207061 • Letter: 2

Question

2) What are the important variables that predict Crime rate? How did you identify them to be important/significant variables?

3) is the model a good model for predicting the crime rate? If yes, why? If no, why not?

4) Next, perform stepwise regression i.e, rerun the regression analysis as many times as necessary till you are left with only significant variables. Please use separate worksheets every time you delete a variable and run the analysis. On what basis did you delete variables one by one?

5) What are the final significant variables you are left with by doing question 4) In other words what factors are important in predicting Crime rate after you re-run analysis in question 4?

AREA NON-SUB % > 66 DOCS HOSP BEDS HS GRAD LABOR INCOME SER CRIMES 1.384 78.1 12.3 2.7300522 7.422818792 50.1 0.435059124 72.1 75.55491637 3.553 37.4 10.7 2.028368794 7.036086775 50.6 0.431017939 33.216 41.32290363 3.916 29.9 8.8 1.464988558 5.53020595 52.2 0.450045767 32.906 67.38352403 2.48 31.5 10.5 2.671904463 5.264299183 66.1 0.475958517 26.573 80.18918919 1.218 0 8.8 1.954985119 8.235491071 62.9 0.451376488 21.524 47.45796131 8.36 46.3 8.2 1.514029181 5.367377478 53.6 0.494276094 18.35 72.25028058 4.935 21.8 11 1.710504202 7.458823529 47.8 0.445882353 16.12 57.76428571 1.008 16.6 10.3 2.034535297 8.483494159 55.9 0.475114271 15.953 54.16251905 4.326 23.6 7.3 1.672489083 5.445414847 50.4 0.473362445 12.107 58.12336245 4.651 38.8 7.7 2.277628032 5.739218329 67.4 0.491374663 10.375 78.74730458 4.226 38.1 9.8 2.302032235 3.778556412 67.8 0.490399439 10.918 64.04975473 2.045 37.2 21.4 1.412318841 6.422463768 50.7 0.393623188 7.989 64.67898551 1.59 30.1 10.9 1.748667174 7.607006855 50.4 0.430845392 8.411 51.5575019 3.65 34.6 11.1 2.103479037 5.552185549 62.9 0.481088314 7.792 68.970562 3.434 28.9 8.3 1.984930032 3.460710441 65.1 0.45489774 5.909 77.94402583 3.358 35.1 11.3 2.048447205 6.847204969 44.9 0.446086957 4.941 53.15031056 3.491 48.5 9.7 1.945383615 7.308192458 59.6 0.471131339 4.798 57.88426528 4.08 59.6 9.9 2.065976714 9.697283312 47.3 0.492755498 4.6 43.90168176 0.596 100 6 1.742738589 3.899031812 66 0.442461964 5.181 64.98478562 2.419 27.8 9.9 1.931993818 4.435857805 57.8 0.443276662 3.86 47.64914992 1.951 28.4 14.5 1.106518283 7.699523052 47.9 0.43163752 3.667 23.63751987 1.49 33.1 11.9 1.325320513 6.118589744 47.4 0.481089744 4.144 30.59294872 0.047 41.9 11.9 1.320921986 5.943262411 36.3 0.459042553 3.915 51.69680851 1.182 32.4 7.4 1.007782101 4.892996109 52.4 0.421789883 3.627 68.4844358 0.476 8.9 10.9 1.599593496 5.646341463 60.1 0.443902439 3.603 50.3800813 2.766 67.9 7.7 1.432489451 8.170886076 56.3 0.47257384 2.598 63.22151899 5.966 39.5 9.6 1.561440678 4.040254237 52.7 0.522457627 3.007 80.94279661 1.863 50.4 7.7 1.44017094 6.386752137 63.8 0.416239316 2.747 53.75854701 9.24 67 10.3 2.468131868 5.158241758 63.1 0.403516484 2.598 91.53626374 1.63 41.9 10.7 1.61247216 9.788418708 50 0.440979955 2.445 39.18930958 1.624 13.4 11 1.939393939 6.848484848 55.4 0.484382284 2.885 39.59207459 2.109 41.2 10.3 1.290322581 6.300248139 45.2 0.454342432 2.308 40.29776675 8.152 22.3 9.1 1.115702479 3.454545455 51.7 0.456749311 2.257 78.10192837 0.655 75.2 6.6 1.167582418 10.65659341 51.6 0.447802198 2.088 42.92032967 1.803 35.3 10.4 1.334254144 5.903314917 53.7 0.466574586 2.666 45.31767956 1.198 55.1 8 3.741214058 12.38658147 71.2 0.550479233 2.038 59.66773163 1.412 39.2 11.3 1.40192926 5.906752412 49.4 0.495819936 2.098 82.68167203 2.071 19.9 11.3 1.535947712 8.27124183 58.9 0.43496732 1.782 36.47385621 0.862 26.3 13.4 1.400662252 6.387417219 43.3 0.481788079 2.01 25.49337748 1.526 71.7 7.7 1.363036304 5.399339934 47.1 0.415181518 1.692 66.1320132 1.758 33.2 11.6 0.996632997 8.929292929 45.3 0.385185185 1.641 41.97643098 2.71 63.7 6.2 1.239583333 4.434027778 72.8 0.385069444 1.639 63.10069444 3.324 49.7 8.4 1.356363636 3.378181818 62.5 0.438181818 1.918 53.73090909 7.397 47.3 12.1 1.329588015 7.647940075 56.2 0.425842697 1.654 45.96629213 1.148 45.3 11.1 1.512733447 9.830220713 54 0.470288625 3.51 49.63837012 1.509 37.6 12 1.690513219 7.620528771 51.4 0.497045101 3.982 45.19129082 2.013 61.7 9.7 1.07480315 5.842519685 50.9 0.42007874 1.412 56.87401575 1.011 37.8 10.5 1.13304721 4.137339056 70.7 0.4 1.337 60.16309013 0.813 13.4 10.9 1.599137931 18.77155172 58 0.418103448 1.589 36.32758621 0.654 28.8 3.9 0.606060606 5.61038961 55.1 0.28961039 1.148 68.76190476

Explanation / Answer

Answer:

2) What are the important variables that predict Crime rate? How did you identify them to be important/significant variables?

important variables: AREA, . HOSP BEDS

both variables are significant, p values for both variables are < 0.05 level.

3) is the model a good model for predicting the crime rate? If yes, why? If no, why not?

The model is significant, F=5.42, P=0.0001.

R square value is 0.514, 51.4% of crime rate is explained by the model.

Regression Analysis

0.514

Adjusted R²

0.419

n

50

R

0.717

k

8

Std. Error

11.886

Dep. Var.

SER CRIMES

ANOVA table

Source

SS

df

MS

F

p-value

Regression

6,126.7512

8  

765.8439

5.42

.0001

Residual

5,792.8441

41  

141.2889

Total

11,919.5953

49  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=41)

p-value

95% lower

95% upper

Intercept

60.5831

32.0356

1.891

.0657

-4.1142

125.2804

AREA

2.1204

0.8600

2.466

.0180

0.3835

3.8572

NON-SUB

0.1151

0.0937

1.228

.2264

-0.0741

0.3043

% > 66

-0.8788

0.7528

-1.167

.2498

-2.3990

0.6415

DOCS

6.2809

5.4390

1.155

.2549

-4.7033

17.2651

HOSP BEDS

-2.1005

0.7373

-2.849

.0068

-3.5896

-0.6114

HS GRAD

0.2769

0.2845

0.973

.3360

-0.2976

0.8514

LABOR

-41.6172

53.3533

-0.780

.4399

-149.3665

66.1320

INCOME

0.1793

0.1703

1.053

.2986

-0.1646

0.5232

4) Next, perform stepwise regression i.e, rerun the regression analysis as many times as necessary till you are left with only significant variables. Please use separate worksheets every time you delete a variable and run the analysis. On what basis did you delete variables one by one?

Basis of p values. Include the variable is its p value <0.05 and delete if its p value >0.05.

Regression Analysis -- Stepwise Selection displaying the best model of each size

50

observations

SER CRIMES

is the dependent variable

p-values for the coefficients

Nvar

AREA

NON-SUB

% > 66

DOCS

HOSP BEDS

HS GRAD

LABOR

INCOME

s

Adj R²

Cp

p-value

1

.0006

13.921

.203

.220

19.833

.0006

2

.0059

.0001

12.967

.309

.337

11.936

.0001

3

.0113

.0077

.0158

12.438

.364

.403

8.366

2.53E-05

4

.0265

.0471

.0125

.0015

12.034

.405

.453

6.122

1.41E-05

5

.0116

.0895

.0083

.0130

.0582

11.788

.429

.487

5.274

1.28E-05

6

.0114

.1575

.3356

.0110

.0435

.0478

11.795

.428

.498

6.341

2.62E-05

7

.0197

.1888

.2700

.3948

.0080

.1919

.1792

11.831

.425

.507

7.608

.0001

8

.0180

.2264

.2498

.2549

.0068

.3360

.4399

.2986

11.886

.419

.514

9.000

.0001

5) What are the final significant variables you are left with by doing question

AREA, HOSP BEDS, HS GRAD

Regression Analysis

0.403

Adjusted R²

0.364

n

50

R

0.635

k

3

Std. Error

12.438

Dep. Var.

SER CRIMES

ANOVA table

Source

SS

df

MS

F

p-value

Regression

4,803.4030

3  

1,601.1343

10.35

2.53E-05

Residual

7,116.1922

46  

154.6998

Total

11,919.5953

49  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=46)

p-value

95% lower

95% upper

Intercept

32.6757

14.1295

2.313

.0253

4.2345

61.1170

AREA

2.3205

0.8797

2.638

.0113

0.5499

4.0912

HOSP BEDS

-1.9916

0.7151

-2.785

.0077

-3.4310

-0.5523

HS GRAD

0.5581

0.2227

2.506

.0158

0.1099

1.0064

Regression Analysis

0.514

Adjusted R²

0.419

n

50

R

0.717

k

8

Std. Error

11.886

Dep. Var.

SER CRIMES

ANOVA table

Source

SS

df

MS

F

p-value

Regression

6,126.7512

8  

765.8439

5.42

.0001

Residual

5,792.8441

41  

141.2889

Total

11,919.5953

49  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=41)

p-value

95% lower

95% upper

Intercept

60.5831

32.0356

1.891

.0657

-4.1142

125.2804

AREA

2.1204

0.8600

2.466

.0180

0.3835

3.8572

NON-SUB

0.1151

0.0937

1.228

.2264

-0.0741

0.3043

% > 66

-0.8788

0.7528

-1.167

.2498

-2.3990

0.6415

DOCS

6.2809

5.4390

1.155

.2549

-4.7033

17.2651

HOSP BEDS

-2.1005

0.7373

-2.849

.0068

-3.5896

-0.6114

HS GRAD

0.2769

0.2845

0.973

.3360

-0.2976

0.8514

LABOR

-41.6172

53.3533

-0.780

.4399

-149.3665

66.1320

INCOME

0.1793

0.1703

1.053

.2986

-0.1646

0.5232

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote