Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Problem 6-27 Air pollution control specialists in southern California monitor th

ID: 3204795 • Letter: P

Question

Problem 6-27 Air pollution control specialists in southern California monitor the amount of ozone, carbon dioxide, and nitrogen dioxide in the air on an hourly basis. The hourly time series data exhibit seasonality, with the levels of pollutants showing patterns that vary over the hours in the day. On July 15, 16, and 17, the following levels of nitrogen dioxide were observed for the 12 hours from 6:00 A.M. to 6:00 P.M.

July 15: 25 28 35 50 60 60 40 35 30 25 25 20

July 16: 28 30 35 48 60 65 50 40 35 25 20 20

July 17: 35 42 45 70 72 75 60 45 40 25 25 25


Using the equation developed in part (b), compute estimates of the levels of nitrogen dioxide for July 18. If required, round your answers to three decimal places.

Value = + HOUR1 + HOUR2 + HOUR3 + HOUR4 + HOUR5 + HOUR6 + HOUR7 + HOUR8 + HOUR9 + HOUR10 + HOUR11 + t

Explanation / Answer

Result:

Problem 6-27 Air pollution control specialists in southern California monitor the amount of ozone, carbon dioxide, and nitrogen dioxide in the air on an hourly basis. The hourly time series data exhibit seasonality, with the levels of pollutants showing patterns that vary over the hours in the day. On July 15, 16, and 17, the following levels of nitrogen dioxide were observed for the 12 hours from 6:00 A.M. to 6:00 P.M.

July 15: 25 28 35 50 60 60 40 35 30 25 25 20

July 16: 28 30 35 48 60 65 50 40 35 25 20 20

July 17: 35 42 45 70 72 75 60 45 40 25 25 25

Use a multiple linear regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data:

Regression Analysis

0.954

Adjusted R²

0.931

n

36

R

0.977

k

12

Std. Error

4.245

Dep. Var.

value

ANOVA table

Source

SS

df

MS

F

p-value

Regression

8,663.7222

12  

721.9769

40.06

1.62E-12

Residual

414.5000

23  

18.0217

Total

9,078.2222

35  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=23)

p-value

95% lower

95% upper

Intercept

11.167

3.0018

3.720

.0011

4.9569

17.3764

hour1

7.667

3.4662

2.212

.0372

0.4963

14.8370

hour2

11.667

3.4662

3.366

.0027

4.4963

18.8370

hour3

16.667

3.4662

4.808

.0001

9.4963

23.8370

hour4

34.333

3.4662

9.905

9.15E-10

27.1630

41.5037

hour5

42.333

3.4662

12.213

1.55E-11

35.1630

49.5037

hour6

45.000

3.4662

12.983

4.52E-12

37.8296

52.1704

hour7

28.333

3.4662

8.174

2.96E-08

21.1630

35.5037

hour8

18.333

3.4662

5.289

2.28E-05

11.1630

25.5037

hour9

13.333

3.4662

3.847

.0008

6.1630

20.5037

hour10

3.333

3.4662

0.962

.3462

-3.8370

10.5037

hour11

1.667

3.4662

0.481

.6352

-5.5037

8.8370

t

5.250

0.8665

6.059

3.53E-06

3.4574

7.0426

Value =11.167 + 7.667 HOUR1 +  11.667HOUR2 +  16.667HOUR3 +
34.333HOUR4 +  42.333HOUR5 +  45.000HOUR6 +  28.333HOUR7 +
18.333HOUR8 + 13.333 HOUR9 +  3.333HOUR10 + 1.667 HOUR11 + 5.250 t

Using the equation developed in part (b), compute estimates of the levels of nitrogen dioxide for July 18. If required, round your answers to three decimal places.

Period

Forecast

6:00 a.m. 7:00 a.m.

39.833

7:00 a.m. 8:00 a.m.

43.833

8:00 a.m. 9:00 a.m.

48.833

9:00 a.m. 10:00 a.m.

66.500

10:00 a.m. 11:00 a.m.

74.500

11:00 a.m. noon

77.167

noon 1:00 p.m.

60.500

1:00 p.m. 2:00 p.m.

50.500

2:00 p.m. 3:00 p.m.

45.500

3:00 p.m. 4:00 p.m.

35.500

4:00 p.m. 5:00 p.m.

33.833

5:00 p.m. 6:00 p.m.

32.167

Predicted values for: value

95% Confidence Intervals

95% Prediction Intervals

hour1

hour2

hour3

hour4

hour5

hour6

hour7

hour8

hour9

hour10

hour11

t

Predicted

lower

upper

lower

upper

Leverage

1

0

0

0

0

0

0

0

0

0

0

4

39.833

33.624

46.043

29.078

50.589

0.500

0

1

0

0

0

0

0

0

0

0

0

4

43.833

37.624

50.043

33.078

54.589

0.500

0

0

1

0

0

0

0

0

0

0

0

4

48.833

42.624

55.043

38.078

59.589

0.500

0

0

0

1

0

0

0

0

0

0

0

4

66.500

60.290

72.710

55.744

77.256

0.500

0

0

0

0

1

0

0

0

0

0

0

4

74.500

68.290

80.710

63.744

85.256

0.500

0

0

0

0

0

1

0

0

0

0

0

4

77.167

70.957

83.376

66.411

87.922

0.500

0

0

0

0

0

0

1

0

0

0

0

4

60.500

54.290

66.710

49.744

71.256

0.500

0

0

0

0

0

0

0

1

0

0

0

4

50.500

44.290

56.710

39.744

61.256

0.500

0

0

0

0

0

0

0

0

1

0

0

4

45.500

39.290

51.710

34.744

56.256

0.500

0

0

0

0

0

0

0

0

0

1

0

4

35.500

29.290

41.710

24.744

46.256

0.500

0

0

0

0

0

0

0

0

0

0

1

4

33.833

27.624

40.043

23.078

44.589

0.500

0

0

0

0

0

0

0

0

0

0

0

4

32.167

25.957

38.376

21.411

42.922

0.500

Regression Analysis

0.954

Adjusted R²

0.931

n

36

R

0.977

k

12

Std. Error

4.245

Dep. Var.

value

ANOVA table

Source

SS

df

MS

F

p-value

Regression

8,663.7222

12  

721.9769

40.06

1.62E-12

Residual

414.5000

23  

18.0217

Total

9,078.2222

35  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=23)

p-value

95% lower

95% upper

Intercept

11.167

3.0018

3.720

.0011

4.9569

17.3764

hour1

7.667

3.4662

2.212

.0372

0.4963

14.8370

hour2

11.667

3.4662

3.366

.0027

4.4963

18.8370

hour3

16.667

3.4662

4.808

.0001

9.4963

23.8370

hour4

34.333

3.4662

9.905

9.15E-10

27.1630

41.5037

hour5

42.333

3.4662

12.213

1.55E-11

35.1630

49.5037

hour6

45.000

3.4662

12.983

4.52E-12

37.8296

52.1704

hour7

28.333

3.4662

8.174

2.96E-08

21.1630

35.5037

hour8

18.333

3.4662

5.289

2.28E-05

11.1630

25.5037

hour9

13.333

3.4662

3.847

.0008

6.1630

20.5037

hour10

3.333

3.4662

0.962

.3462

-3.8370

10.5037

hour11

1.667

3.4662

0.481

.6352

-5.5037

8.8370

t

5.250

0.8665

6.059

3.53E-06

3.4574

7.0426

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote