F = P = variety length bihai 49.35 bihai 49.45 bihai 48.84 bihai 45.4 bihai 47.6
ID: 3200005 • Letter: F
Question
F =
P =
variety length
bihai 49.35
bihai 49.45
bihai 48.84
bihai 45.4
bihai 47.64
bihai 47.39
bihai 47.36
bihai 47.44
bihai 47.6
bihai 47.68
bihai 48.43
bihai 47.04
bihai 47.27
bihai 48.78
bihai 46.13
bihai 49.41
red 38.56
red 40.61
red 41.17
red 38.32
red 40.04
red 42.19
red 40.53
red 38.73
red 39.97
red 39.6
red 39.86
red 38.02
red 38.63
red 39.22
red 39.69
red 37.84
red 39.48
red 41.18
red 37.27
red 41.34
red 40.85
red 38.58
red 39.86
yellow 35.21
yellow 35.23
yellow 37.3
yellow 34.73
yellow 37.59
yellow 35.49
yellow 35.91
yellow 35.44
yellow 35.71
yellow 35.77
yellow 34.55
yellow 35.23
yellow 35.11
yellow 35.14
yellow 35.95
flower type n s H. bihai H. caribaea red H. caribaea yellowExplanation / Answer
We can use ANOVA test to compare the mean lengths of the flowers for the three specie. The results is obtained by excel.
The p-value is less than 0.05, we conclude that there is a significant difference in the mean lengths of the flowers for the three species.
flower type n mean(x) s s_{mean(x)} bihai 16 47.7240 1.1227 0.2807 caribaea red 23 39.6322 1.2655 0.2639 caribaea yellow 15 35.6240 0.8399 0.2169Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.