Using R Studio. The data set below, contains mercury levels (parts per million)
ID: 3181941 • Letter: U
Question
Using R Studio.
The data set below, contains mercury levels (parts per million) for 30 fish caught in lakes in some place in US. SHOW ALL CODES:
(a) Create a index plot, histogram, and boxplot of the data.
(b) Bootstrap the mean and find the bootstrap standard error and the 95% bootstrap percentile interval.
(c) Remove the outlier and repeat part (b). [Hint: you may use the code below to remove the outlier in a data set.]
par(mfrow=c(2,2))
plot(y)
boxplot(y)
hist(y)
which(y>a) # this produce an index of the outlier
y[index] <- b #some value that you need to remove the outlier
plot(y)
(d) What effect did removing the outlier have on the bootstrap distribution, in particular, the standard error?
Data Set:
Explanation / Answer
fish <- read.csv("mercury.txt")
par(mfrow = c(3,1))
plot(fish$Mercury, main = "Index plot of Mercury levels", ylab = "Mercury")
hist(fish$Mercury, main = "Histogram of Mercury Levels", xlab = "Mercury")
boxplot(fish$Mercury, ylab = "Mercury", main = "Boxplot of Mercury level")
N = 10^4
boot.mean <- numeric(N)
fish1 <- fish[,1]
for(i in 1:N){
boot.mean[i] <- mean(sample(fish1,length(fish1),replace=TRUE))
}
mean(boot.mean)
sd(boot.mean)
CI <- quantile(boot.mean, prob = c(.025, .975))
fish2 <-fish[fish < max(fish)]
boot.mean2 <- numeric(N)
par(mfrow = c(3,1))
plot(fish2, main = "Index plot of Mercury levels", ylab = "Mercury")
hist(fish2, main = "Histogram of Mercury Levels", xlab = "Mercury")
boxplot(fish2, ylab = "Mercury", main = "Boxplot of Mercury level")
for(i in 1:N){
boot.mean2[i] <- mean(sample(fish2,length(fish2),replace=TRUE))
}
mean(boot.mean2)
sd(boot.mean2)
CI2 <- quantile(boot.mean2, prob = c(.025, .975))
paste("Removing the outlier out reduced our bootstrap mean and the standard error by ",round(abs(mean(boot.mean2)-mean(boot.mean))/mean(boot.mean)*100,2%))
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.