Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A study was undertaken to examine the profits per sales dollars earned by a cons

ID: 3179619 • Letter: A

Question

A study was undertaken to examine the profits per sales dollars earned by a construction company and its relationship to the size of the construction contract (CS, in hundreds of thousands of dollars) and the number of years of experience of the construction supervisor (SE). Data are recorded in the excel file (which is posted on the course website with the tab "Question 1"). a. Consider the model: Model 1: Profit = beta_0 + beta_1 CS + beta_2 SE + u where u is the random error. Obtain the least squares estimate beta_0, beta_1 and beta_2. b. Consider the model: Model 2: Profit = alpha_0 + alpha_1 CS + v where v is the random error. Obtain the least squares estimate alpha_0, and alpha_1. c. Describe when omitted SE from the model, what happen to alpha_1. d. Consider the model: Model 3: SE = delta_0 + delta_1 CS + w where 2 is the random error. Obtain the least squares estimate delta_0, and delta_1. e. Demonstrate that alpha_1 = beta_2 delta_1.

Explanation / Answer

Result:

a).

Regression Analysis

0.328

Adjusted R²

0.239

n

18

R

0.573

k

2

Std. Error

1.999

Dep. Var.

Profit

ANOVA table

Source

SS

df

MS

F

p-value

Regression

29.3211

2  

14.6605

3.67

.0505

Residual

59.9567

15  

3.9971

Total

89.2778

17  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=15)

p-value

95% lower

95% upper

Intercept

8.0136

1.4454

5.544

.0001

4.9328

11.0944

CS

-1.3548

0.5530

-2.450

.0271

-2.5336

-0.1760

SE

0.4626

0.4346

1.065

.3039

-0.4636

1.3889

Profit = 8.0136-1.3548CS+0.4626 SE

b).

Regression Analysis

0.278

n

18

r

-0.527

k

1

Std. Error

2.008

Dep. Var.

Profit

ANOVA table

Source

SS

df

MS

F

p-value

Regression

24.7911

1  

24.7911

6.15

.0246

Residual

64.4867

16  

4.0304

Total

89.2778

17

Regression output

confidence interval

variables

coefficients

std. error

   t (df=16)

p-value

95% lower

95% upper

Intercept

8.2475

1.4345

5.749

2.99E-05

5.2065

11.2886

CS

-0.9146

0.3688

-2.480

.0246

-1.6964

-0.1328

Profit = 8.2475-0.9146 CS

c).

The regression coefficient is changed from to -0.9146, increased.

d).

Regression Analysis

0.559

n

18

r

0.748

k

1

Std. Error

1.150

Dep. Var.

SE

ANOVA table

Source

SS

df

MS

F

p-value

Regression

26.8335

1  

26.8335

20.28

.0004

Residual

21.1665

16  

1.3229

Total

48.0000

17  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=16)

p-value

95% lower

95% upper

Intercept

0.5057

0.8219

0.615

.5470

-1.2365

2.2480

CS

0.9515

0.2113

4.504

.0004

0.5037

1.3994

SE= 0.5057+0.9515 CS

e).

1+21= -1.3548+0.4626*0.9515   = -0.9146361

=1

Regression Analysis

0.328

Adjusted R²

0.239

n

18

R

0.573

k

2

Std. Error

1.999

Dep. Var.

Profit

ANOVA table

Source

SS

df

MS

F

p-value

Regression

29.3211

2  

14.6605

3.67

.0505

Residual

59.9567

15  

3.9971

Total

89.2778

17  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=15)

p-value

95% lower

95% upper

Intercept

8.0136

1.4454

5.544

.0001

4.9328

11.0944

CS

-1.3548

0.5530

-2.450

.0271

-2.5336

-0.1760

SE

0.4626

0.4346

1.065

.3039

-0.4636

1.3889

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote