Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A lead inspector at ElectroTech, an electronics assembly shop, wants to convince

ID: 3177494 • Letter: A

Question

A lead inspector at ElectroTech, an electronics assembly shop, wants to convince management that it takes longer, on a per-component basis, to inspect large devices with many components than it does to inspect small devices because it is difficult to keep track of which components have already been inspected. To prove her point, she has collected data from the last 25 devices. The data are shown in the accompanying table Number of Components Inspection Time on Device (seconds) 31 83 13 30 17 59 15 51 11 40 24 71 98 21 42 11 18 62 25 30 79 12 49 10 32 19 63 17 53 18 60 24 71 102 44 17 58 14 44 21 68 13 46 23 69 Click here for the Excel Data File a. A scatterplot of the above data is shown below. Does the lead inspector's claim seem credible? 120 100 80

Explanation / Answer

Result:

a). Yes, there is positive association, the lead inspectors claim seem credible.

B1).

Linear : Adjusted R2 =0.9247

Quadratic : Adjusted R2 = 0.9704

Cubic : Adjusted R2 =0.9795

B2).

Best: cubic model

c).

Predicted time = 90.23

Predicted values for: y

95% Confidence Interval

95% Prediction Interval

x

xx

xxx

Predicted

lower

upper

lower

upper

Leverage

38

1,444

54872.0000

90.226

86.370

94.083

82.963

97.490

0.393

Regression Analysis

0.9247

n

25

r

0.962

k

1

Std. Error

5.791

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

9,469.6719

1  

9,469.6719

282.39

2.07E-14

Residual

771.2881

23  

33.5343

Total

10,240.9600

24  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=23)

p-value

95% lower

95% upper

Intercept

18.8457

2.5509

7.388

1.64E-07

13.5686

24.1227

x

2.0359

0.1212

16.804

2.07E-14

1.7853

2.2866

Regression Analysis

0.973

Adjusted R²

0.9704

n

25

R

0.986

k

2

Std. Error

3.554

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

9,963.1135

2  

4,981.5567

394.44

5.86E-18

Residual

277.8465

22  

12.6294

Total

10,240.9600

24  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=22)

p-value

95% lower

95% upper

Intercept

-0.7059

3.4978

-0.202

.8419

-7.9599

6.5481

x

4.0253

0.3268

12.316

2.41E-11

3.3475

4.7031

xx

-0.0401

0.0064

-6.251

2.73E-06

-0.0534

-0.0268

Regression Analysis

0.982

Adjusted R²

0.9795

n

25

R

0.991

k

3

Std. Error

2.960

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

10,056.9774

3  

3,352.3258

382.64

1.76E-18

Residual

183.9826

21  

8.7611

Total

10,240.9600

24  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=21)

p-value

95% lower

95% upper

Intercept

-20.8727

6.8153

-3.063

.0059

-35.0458

-6.6996

x

7.3482

1.0510

6.991

6.66E-07

5.1624

9.5339

xx

-0.1956

0.0478

-4.091

.0005

-0.2950

-0.0962

xxx

0.0021

0.0006

3.273

.0036

0.0008

0.0034

Predicted values for: y

95% Confidence Interval

95% Prediction Interval

x

xx

xxx

Predicted

lower

upper

lower

upper

Leverage

38

1,444

54872.0000

90.226

86.370

94.083

82.963

97.490

0.393

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote