Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

ONLY NEED HELP WITH PART C Viscosity, V 13.300 14.500 15.300 15.300 14.300 14.80

ID: 3172143 • Letter: O

Question

ONLY NEED HELP WITH PART C

Viscosity, V

13.300

14.500

15.300

15.300

14.300

14.800

15.200

14.500

14.600

14.100

14.300

16.100

13.100

15.500

12.600

14.600

14.300

15.400

15.200

16.800

14.900

13.700

15.200

14.500

15.300

15.600

15.800

13.300

14.100

15.400

15.200

15.200

15.900

16.500

14.800

15.100

17.000

14.900

14.800

14.000

15.800

13.700

15.100

13.400

14.100

14.800

14.300

14.300

16.400

16.900

14.200

16.900

14.900

15.200

14.400

15.200

14.600

16.400

14.200

15.700

16.000

14.900

13.600

15.300

14.300

15.600

16.100

13.900

15.200

14.400

14.000

14.400

13.700

13.800

15.600

14.500

12.800

16.100

16.600

15.600

Viscosity, V

13.300

14.500

15.300

15.300

14.300

14.800

15.200

14.500

14.600

14.100

14.300

16.100

13.100

15.500

12.600

14.600

14.300

15.400

15.200

16.800

14.900

13.700

15.200

14.500

15.300

15.600

15.800

13.300

14.100

15.400

15.200

15.200

15.900

16.500

14.800

15.100

17.000

14.900

14.800

14.000

15.800

13.700

15.100

13.400

14.100

14.800

14.300

14.300

16.400

16.900

14.200

16.900

14.900

15.200

14.400

15.200

14.600

16.400

14.200

15.700

16.000

14.900

13.600

15.300

14.300

15.600

16.100

13.900

15.200

14.400

14.000

14.400

13.700

13.800

15.600

14.500

12.800

16.100

16.600

15.600

(a) Given the sample data, viscosity of sample fluids produced at our plant (entered as a table so you can copy it into Excel easily), find the mean, median, mode, standard deviation and variance of the sample. Mean: 14.89875 Median: 14.9 Mode: 15.2 Standard Deviation: 0.9803763 Variance: 0.96113766 (b) If the process is supposed to produce viscosities of 15.0 t/-1.5, comment on how well the process is working The process is working just fine, as the standard deviation for this sample is only about 0.98 which is under the given 1.5 standard deviation listed above. (c) If we wanted to define a variable (X, as a function of viscosity) that has a mean of 0 and a standard deviation of 1, what would it be? Demonstrate mathematically that you get the correct mean and standard deviation. What value would this have to our analysis of data? for part c remember that and N-1

Explanation / Answer

c)

Z = (X- E(X) )/sd (X) has mean 0 , and variance = 1

hence

Z = (V - 14.8975)/0.9803763 ,