Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question: a) Prepare a scatter plot of the data. Based on your plot, does a simp

ID: 3171876 • Letter: Q

Question

Question:

a) Prepare a scatter plot of the data. Based on your plot, does a simple linear regression model appear adequate for modelling the sales data?

b) Use the Box-Cox procedure and standardization discussed in class to find an appropriate power transformation of Y . Evaluate SSE for = 0.2, 0.1, 0, 1, 2. What transformation of Y is suggested?

c) Apply the transformation Y = log_10Y to the data and analyze the data using SLR analysis.

d) Plot the estimated regression line and the transformed data. Does the regression line appear to be a good fit to the transformed data?

e) Obtain the residuals and plot them against the fitted values. Also prepare a Q-Q plot. What do your plots show?

f) Express the estimated regression function for the transformed data in the original units.

Show all the workings and R-studio codes.

Data:

Explanation / Answer

scatter plot of the data

Regression Analysis: Y versus X

The regression equation is
Y = 2.58 - 0.324 X


Predictor      Coef SE Coef      T      P
Constant     2.5753   0.2487 10.35 0.000
X          -0.32400 0.04330 -7.48 0.000

S = 0.474314   R-Sq = 81.2%   R-Sq(adj) = 79.7%


Analysis of Variance

Source          DF      SS      MS      F      P
Regression       1 12.597 12.597 55.99 0.000
Residual Error 13   2.925   0.225
Total           14 15.522

After Transformation of Log Y

MTB > let C4 = log(Y)
MTB > Name c5 "RESI2"
MTB > Regress 'LnY' 1 'X';
SUBC>   Residuals 'RESI2';
SUBC>   Constant;
SUBC>   Brief 1.

Regression Analysis: LnY versus X

The regression equation is
LnY = 1.51 - 0.450 X


Predictor      Coef SE Coef       T      P
Constant    1.50792 0.06028   25.01 0.000
X          -0.44993 0.01049 -42.87 0.000


S = 0.114956   R-Sq = 99.3%   R-Sq(adj) = 99.2%


Analysis of Variance

Source          DF      SS      MS        F      P
Regression       1 24.292 24.292 1838.23 0.000
Residual Error 13   0.172   0.013
Total           14 24.464

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote