I need help with 5.8.2. I\'m not sure how to code it using R. The data set \"cak
ID: 3170345 • Letter: I
Question
I need help with 5.8.2. I'm not sure how to code it using R.
The data set "cakes" is part of the library "alr4". https://rdrr.io/rforge/alr4/man/cakes.html
My R input is:
> cakes.lm = lm(Y~block+X1 + X2 + I(X1^2) + I(X2^2) + X1:X2 + block:X1 + block:X2 + block:I(X1^2) + block:I(X2^2) + block:(X1:X2), data=cakes)
> summary(cakes.lm)
but my output has two NA's
Call:
lm(formula = Y ~ block + X1 + X2 + I(X1^2) + I(X2^2) + X1:X2 +
block:X1 + block:X2 + block:I(X1^2) + block:I(X2^2) + block:(X1:X2),
data = cakes)
Residuals:
1 2 3 4 5 6 7 8 9 10 11
-6.314e-16 -5.391e-16 -5.786e-16 -5.054e-16 3.233e-01 -4.067e-01 8.333e-02 4.941e-16 6.104e-16 5.039e-16 5.521e-16
12 13 14
-2.933e-01 3.367e-01 -4.333e-02
Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.195e+03 1.970e+02 -11.146 0.000369 ***
block1 1.980e+01 1.146e+02 0.173 0.871189
X1 2.684e+01 6.176e+00 4.347 0.012187 *
X2 9.781e+00 1.145e+00 8.539 0.001032 **
I(X1^2) -1.725e-01 7.691e-02 -2.243 0.088326 .
I(X2^2) -1.174e-02 1.578e-03 -7.441 0.001742 **
X1:X2 -4.163e-02 8.643e-03 -4.816 0.008549 **
block1:X1 -1.126e+00 6.536e+00 -0.172 0.871623
block1:X2 -1.672e-02 2.445e-02 -0.684 0.531701
block1:I(X1^2) 2.083e-02 9.336e-02 0.223 0.834350
block1:I(X2^2) NA NA NA NA
block1:X1:X2 NA NA NA NA
---
Signif. codes: 0 **0.001 *0.01 0.05 0.1 1
Residual standard error: 0.3457 on 4 degrees of freedom
Multiple R-squared: 0.9833, Adjusted R-squared: 0.9458
F-statistic: 26.21 on 9 and 4 DF, p-value: 0.003309
Explanation / Answer
Please note that NA more generally means that the coefficient cannot be estimated. This can happen due to exact collinearity between the variables. But, it can also happen due to not having enough observations to estimate the relevant parameters, so if we run the regression equation as
fit<- lm(Y~X1+X2+I(X1^2)+I(X2^2)+X1:X2, data=cakes)
summary(fit)
summary(fit)
Call:
lm(formula = Y ~ X1 + X2 + I(X1^2) + I(X2^2) + X1:X2, data = cakes)
Residuals:
Min 1Q Median 3Q Max
-0.4912 -0.3080 0.0200 0.2658 0.5454
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.204e+03 2.416e+02 -9.125 1.67e-05 ***
X1 2.592e+01 4.659e+00 5.563 0.000533 ***
X2 9.918e+00 1.167e+00 8.502 2.81e-05 ***
I(X1^2) -1.569e-01 3.945e-02 -3.977 0.004079 **
I(X2^2) -1.195e-02 1.578e-03 -7.574 6.46e-05 ***
X1:X2 -4.163e-02 1.072e-02 -3.883 0.004654 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.4288 on 8 degrees of freedom
Multiple R-squared: 0.9487, Adjusted R-squared: 0.9167
F-statistic: 29.6 on 5 and 8 DF, p-value: 5.864e-05
, here the model is signifcant enough and at the same time is able to explain 92% of the variation in the data
This is also in accordance with the mean function you are trying to fit
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.