Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Test the claim about the population mean p at the level of significance alpha. A

ID: 3160537 • Letter: T

Question

Test the claim about the population mean p at the level of significance alpha. Assume the population is normally distributed. Claim: mu 35; alpha = 0.05; a sigma = 2.7 Sample statistics: x = 34.1, n = 35 Not enough information to decide. Reject H_0. There is enough evidence at the 5% level of significance to support the claim. Fail to reject H_0. There is not enough evidence at the 5% level of significance to support the claim. Find the equation of the regression line for the given data. y = 0.522x - 2.097 y = 2.09/x + 0.552 y D) v = -0.552x + 2.097 y = 2.097x - 0.552 Find the weighted estimate, p to test the claim that P_1 = P_2 Use alpha = 0.05. Assume the samples are random independent Samples statistics: R_T = 50; x1 = 35, and n2 = 60, x2 = 40 0.328 0.682 1.367 0.238

Explanation / Answer

18.

Formulating the null and alternative hypotheses,              
              
Ho:   u   =   35  
Ha:    u   =/   35  
              
As we can see, this is a    two   tailed test.      
              
Thus, getting the critical z, as alpha =    0.05   ,      
alpha/2 =    0.025          
zcrit =    +/-   1.959963985      
              
Getting the test statistic, as              
              
X = sample mean =    34.1          
uo = hypothesized mean =    35          
n = sample size =    35          
s = standard deviation =    2.7          
              
Thus, z = (X - uo) * sqrt(n) / s =    -1.972026594          
              
Also, the p value is              
              
p =    0.048606571          
              
As |z| > 1.96, and P < 0.05, we   REJECT THE NULL HYPOTHESIS.          

Hence,

OPTION B. [ANSWER]

*******************************************

Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote