Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Multiple myeloma or blood plasma cancer is characterized by increased blood vess

ID: 3157281 • Letter: M

Question

Multiple myeloma or blood plasma cancer is characterized by increased blood vessel formulation in the bone marrow that is a prognostic factor in survival. One treatment approach used for multiple myeloma is stem cell transplantation with the patient’s own stem cells. The following data represent the bone marrow microvessel density for a sample of 7 patients who had a complete response to a stem cell transplant as measured by blood and urine tests. Two measurements were taken: the first immediately prior to the stem cell transplant, and the second at the time of the complete response.

Patient 1             2            3                4                5               6           7

Before 158       189          202            353            416            426        441

After   284        214         101            227            290            176        290

At the .01 level of significance, is there sufficient evidence to conclude that the mean bone marrow microvessel density is higher before the stem cell transplant than after the stem cell transplant?

A.No

B.Yes

C.Cannot Determine

Explanation / Answer

The differences are (before - after):

-126
-25
101
126
126
250
151


Formulating the null and alternative hypotheses,              
              
Ho:   ud   <=   0  
Ha:   ud   >   0  

At level of significance =    0.01          

As we can see, this is a    right   tailed test.      
              
Calculating the standard deviation of the differences (third column):              
              
s =    101.5579772          
              
Thus, the standard error of the difference is sD = s/sqrt(n):              
              
sD =    38.38530732          
              
Calculating the mean of the differences (third column):              
              
XD =    86.14285714          
              
As t = [XD - uD]/sD, where uD = the hypothesized difference =    0   , then      
              
t =    2.244162237          
              
As df = n - 1 =    6          
              
Then the critical value of t is              
              
tcrit =    +   3.142668403      
              
              
Also, using p values,              
              
p =        0.032984229      
              
As t < 3.143, and P > 0.01, WE FAIL TO REJECT THE NULL HYPOTHESIS.          

Hence,

OPTION A: NO. [ANSWER]