Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Listed below are pretest and posttest scores from a study. Using a 5% significan

ID: 3156901 • Letter: L

Question

Listed below are pretest and posttest scores from a study. Using a 5% significance level, is there statistically sufficient evidence to support the claim that the posttest scores were the higher than the pretest scores? Perform an appropriate hypothesis test showing necessary statistical evidence to support your final given conclusion. PreTest PostTest 24 25 11 18 14 16 25 29 17 16 28 29 22 25 Listed below are pretest and posttest scores from a study. Using a 5% significance level, is there statistically sufficient evidence to support the claim that the posttest scores were the higher than the pretest scores? Perform an appropriate hypothesis test showing necessary statistical evidence to support your final given conclusion. PreTest PostTest 24 25 11 18 14 16 25 29 17 16 28 29 22 25

Explanation / Answer

Formulating the null and alternative hypotheses,              
              
Ho:   ud   <=   0  
Ha:   ud   >   0  

As alpha is not given, we set level of significance =    0.05.          

As we can see, this is a    right   tailed test.      
The differences are

1
7
2
4
-1
1
3

              
Calculating the standard deviation of the differences (third column):              
              
s =    2.274696117          
              
Thus, the standard error of the difference is sD = s/sqrt(n):              
              
sD =    0.859754319          
              
Calculating the mean of the differences (third column):              
              
XD =    2.428571429          
              
As t = [XD - uD]/sD, where uD = the hypothesized difference =    0   , then      
              
t =    2.824727221          
              
As df = n - 1 =    6          
              
Then the critical value of t is              
              
tcrit =    +   1.943180281      
              
              
Also, using p values,              
              
p =        0.015083038      
              
As t > 1.943, and P < 0.05, WE REJECT THE NULL HYPOTHESIS.          

Hence, at 0.05 level, there is significant evidence to support the claim that the posttest scores were the higher than the pretest scores. [CONCLUSION]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote