Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

At the time she was hired as a server at the Grumney Family Restaurant, Beth Bri

ID: 3155507 • Letter: A

Question

At the time she was hired as a server at the Grumney Family Restaurant, Beth Brigden was told, “You can average $85 a day in tips.” Assume the population of daily tips is normally distributed with a standard deviation of $4.50. Over the first 47 days she was employed at the restaurant, the mean daily amount of her tips was $86.06. At the 0.01 significance level, can Ms. Brigden conclude that her daily tips average more than $85? a. State the null hypothesis and the alternate hypothesis. H0: 85 ; H1: > 85 H0: >85 ; H1: = 85 H0: 85 ; H1: < 85 H0: = 85 ; H1: 85 b. State the decision rule. Reject H1 if z > 2.33 Reject H0 if z < 2.33 Reject H1 if z < 2.33 Reject H0 if z > 2.33 c. Compute the value of the test statistic. (Round your answer to 2 decimal places.) Value of the test statistic d. What is your decision regarding H0? Do not reject H0 Reject H0 e. What is the p-value? (Round your answer to 4 decimal places.) p-value

Explanation / Answer

a)

Formulating the null and alternative hypotheses,              
              
Ho:   u   <=   85  
Ha:    u   >   85   [ANSWER, A]

****************************

b)
              
As we can see, this is a    right   tailed test.      
              
Thus, getting the critical z, as alpha =    0.01   ,      
alpha =    0.01          
zcrit =    +   2.33

Hence,

Reject Ho when z > 2.33. [ANSWER, D]

*************************

C)
              
Getting the test statistic, as              
              
X = sample mean =    86.06          
uo = hypothesized mean =    85          
n = sample size =    47          
s = standard deviation =    4.5          
              
Thus, z = (X - uo) * sqrt(n) / s =    1.614887528 [ANSWER]

***************************

d)          

As z<2.33, then we DO NO REJECT HO.

*************************

e)
              
Also, the p value is, as this is right tailed,              
              
p =    0.053167527   [ANSWER]

**************************