Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

If weights of men and women can be assumed as Gaussian random variables with the

ID: 3155414 • Letter: I

Question

If weights of men and women can be assumed as Gaussian random variables with the following mean and standar d deviations (in kg) If a man is picked at random, what is the probability he will weigh more than 100kg If a main amd a women are picked at random, what is the probability they will both weigh Dess than 70kg If a woman is picked among the population of all women who weighs less than 60kg, what is the probability she will weigh less than 60kg but more than 50kg '] If 20 men are picked randomly and their weights are averaged, what is the probability the average will be less than 90kg Use the appropriate table in the Appendix of the textbook as needed

Explanation / Answer

i.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    100      
u = mean =    88      
          
s = standard deviation =    11      
          
Thus,          
          
z = (x - u) / s =    1.09      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   1.09   ) =    0.1379 [ANSWER]

***********************

ii.

MAN:

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    70      
u = mean =    88      
          
s = standard deviation =    11      
          
Thus,          
          
z = (x - u) / s =    -1.64      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -1.64   ) =    0.0505

WOMAN:

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    70      
u = mean =    75      
          
s = standard deviation =    9      
          
Thus,          
          
z = (x - u) / s =    -0.56      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.56   ) =    0.2877

******************

Hence,

P(both less than 70) = 0.0505*0.2877 = 0.01452885 [ANSWER]

************************************************

iii.

For P(x<60):

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    60      
u = mean =    75      
          
s = standard deviation =    9      
          
Thus,          
          
z = (x - u) / s =    -1.67      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -1.67   ) =    0.0475

For P(50<x<60):

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    50      
x2 = upper bound =    60      
u = mean =    75      
          
s = standard deviation =    9      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -2.78      
z2 = upper z score = (x2 - u) / s =    -1.67      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.0027      
P(z < z2) =    0.0475      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.0448      

********

hence,

P(50<x<60|x<60) = P(50<x<60)/P(x<60) = 0.0448/0.0475 = 0.943157895 [ANSWER]

**********************************

iv.

Here, the standard error is

SE = s/sqrt(n) = 11/sqrt(20) = 2.459674775.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    90      
u = mean =    88      
          
SE = standard deviation =    2.459674775      
          
Thus,          
          
z = (x - u) / SE =    0.81      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   0.81   ) =    0.791 [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote