Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Sampling distribution for mu Birth weights for full-term babies is a normally di

ID: 3154279 • Letter: S

Question

Sampling distribution for mu Birth weights for full-term babies is a normally distributed random variable with a mean of 7.74 pounds and a standard deviation of 1.07 pounds. Normal distribution questions: If I pick 1 full-term baby, what is the probability that the birth weight is below 7 pounds? Suppose again I pick 1 full term baby. The middle 98% of these babies arc between what 2 weights? Sampling distribution questions: Suppose I pick a random sample of 32 babies. What is the probability that the sample mean for this date is below 7 pounds? Suppose I pick a random sample of 32 babies. The middle 98% of sample means are between what 2 values?

Explanation / Answer

A)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    7      
u = mean =    7.74      
          
s = standard deviation =    1.07      
          
Thus,          
          
z = (x - u) / s =    -0.691588785      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.691588785   ) =    0.244597803 [ANSWER]

************************************************
b)

As the middle area is          
          
Middle Area = P(x1<x<x2) =    0.98      
          
Then the left tailed area of the left endpoint is          
          
P(x<x1) = (1-P(x1<x<x2))/2 =    0.01      
          
Thus, the z score corresponding to the left endpoint, by table/technology, is          
          
z1 =    -2.326347874      
By symmetry,          
z2 =    2.326347874      
          
As          
          
u = mean =    7.74      
s = standard deviation =    1.07      
          
Then          
          
x1 = u + z1*s =    5.250807775      
x2 = u + z2*s =    10.22919223      

Hence, between 5.250807775 and 10.22919223 pounds. [ANSWER]

****************************************

c)

For 32 babies, the standard error would be

s(X) = s/sqrt(n) = 1.07/sqrt(32) = 0.189151064.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    7      
u = mean =    7.74      
          
s = standard deviation =    0.189151064      
          
Thus,          
          
z = (x - u) / s =    -3.912216957      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -3.912216957   ) =    4.57263*10^-5 [ANSWER]

*************************************

d)

As the middle area is          
          
Middle Area = P(x1<x<x2) =    0.98      
          
Then the left tailed area of the left endpoint is          
          
P(x<x1) = (1-P(x1<x<x2))/2 =    0.01      
          
Thus, the z score corresponding to the left endpoint, by table/technology, is          
          
z1 =    -2.326347874      
By symmetry,          
z2 =    2.326347874      
          
As          
          
u = mean =    7.74      
s = standard deviation =    0.189151064      
          
Then          
          
x1 = u + z1*s =    7.299968824      
x2 = u + z2*s =    8.180031176      

Hence, between 7.299968824 and 8.180031176 lbs. [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote