Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A CI is desired for the true average stray-load loss (watts) for a certain type

ID: 3153416 • Letter: A

Question

A CI is desired for the true average stray-load loss (watts) for a certain type of induction motor when the line current is held at 10 amps for a speed of 1500 rpm. Assume that stray-load loss is normally distributed with = 2.1. (Round your answers to two decimal places.)

(a) Compute a 95% CI for when n = 25 and x = 57.3.

  ,

watts

(b) Compute a 95% CI for when n = 100 and x = 57.3.

  ,

watts

(c) Compute a 99% CI for when n = 100 and x = 57.3.

  ,

watts

(d) Compute an 82% CI for when n = 100 and x = 57.3.

  ,

watts

(e) How large must n be if the width of the 99% interval for is to be 1.0? (Round your answer up to the nearest whole number.)
n =

Explanation / Answer

A)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    57.3          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    2.1          
n = sample size =    25          
              
Thus,              
Margin of Error E =    0.823184874          
Lower bound =    56.47681513          
Upper bound =    58.12318487          
              
Thus, the confidence interval is              
              
(   56.47681513   ,   58.12318487   ) [ANSWER]

*************************

b)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    57.3          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    2.1          
n = sample size =    100          
              
Thus,              
Margin of Error E =    0.411592437          
Lower bound =    56.88840756          
Upper bound =    57.71159244          
              
Thus, the confidence interval is              
              
(   56.88840756   ,   57.71159244   ) [ANSWER]

***************************

c)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    57.3          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    2.1          
n = sample size =    100          
              
Thus,              
Margin of Error E =    0.540924154          
Lower bound =    56.75907585          
Upper bound =    57.84092415          
              
Thus, the confidence interval is              
              
(   56.75907585   ,   57.84092415   ) [ANSWER]

****************************

d)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.09          
X = sample mean =    57.3          
z(alpha/2) = critical z for the confidence interval =    1.340755034          
s = sample standard deviation =    2.1          
n = sample size =    100          
              
Thus,              
Margin of Error E =    0.281558557          
Lower bound =    57.01844144          
Upper bound =    57.58155856          
              
Thus, the confidence interval is              
              
(   57.01844144   ,   57.58155856   ) [ANSWER]

***************************

e)

Note that      
      
n = z(alpha/2)^2 s^2 / E^2      
      
where      
      
alpha/2 = (1 - confidence level)/2 =    0.005  
      
Using a table/technology,      
      
z(alpha/2) =    2.575829304  
      
Also,      
      
s = sample standard deviation =    2.1  
E = margin of error = 1.0/2 =   0.5  
      
Thus,      
      
n =    117.039576  
      
Rounding up,      
      
n =    118   [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote