Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

[1] Historical data (1965 – 2012) for the price of crude oil in US$ per barrel o

ID: 3152742 • Letter: #

Question

[1]        Historical data (1965 – 2012) for the price of crude oil in US$ per barrel on the Saudi market is shown in table 1. Use the data to answer the following questions:

Table 1: Selected Data Series 1965 – 2012

Year

Crude Oil US$/barrel

Year

Crude Oil US$/barrel

1965

                26.96

1989

        38.10

1966

                29.14

1990

        39.61

1967

                26.88

1991

42.1

1968

                23.01

1992

        46.81

1969

                23.90

1993

        44.97

1970

                24.96

1994

        50.42

1971

                26.23

1995

        52.86

1972

                27.18

1996

        58.55

1973

                24.88

1997

        57.74

1974

                26.68

1998

        54.39

1975

                26.98

1999

        51.74

1976

                27.46

2000

        53.84

1977

                28.57

2001

        58.96

1978

                28.28

2002

        57.62

1979

                30.27

2003

        58.93

1980

                30.70

2004

        64.75

1981

                34.02

2005

        65.48

1982

                25.83

2006

        65.81

1983

                34.36

2007

        69.67

1984

                37.42

2008

        68.94

1985

                36.43

2009

        62.43

1986

                38.85

2010

        57.22

1987

                35.94

2011

        57.49

1988

                34.62

2012

        58.70

a. Plot the data on a time plot and comment on the pattern in terms of seasonality, cyclicality and trend.                                                                                                            [2 marks]

b. A suitable dynamic model for crude oil prices is Auto Regression (AR) of the form

Yt = a + bYt-1 + cYt-2 + dYt-3 + et

   Estimate the model using the data provided.[5 marks]

c. Forecast the price of crude oil on the Saudi market in 2016                         [3 marks]

d. Determine whether your model in b) is stable/stationary. Show your working [10 marks]

Year

Crude Oil US$/barrel

Year

Crude Oil US$/barrel

1965

                26.96

1989

        38.10

1966

                29.14

1990

        39.61

1967

                26.88

1991

42.1

1968

                23.01

1992

        46.81

1969

                23.90

1993

        44.97

1970

                24.96

1994

        50.42

1971

                26.23

1995

        52.86

1972

                27.18

1996

        58.55

1973

                24.88

1997

        57.74

1974

                26.68

1998

        54.39

1975

                26.98

1999

        51.74

1976

                27.46

2000

        53.84

1977

                28.57

2001

        58.96

1978

                28.28

2002

        57.62

1979

                30.27

2003

        58.93

1980

                30.70

2004

        64.75

1981

                34.02

2005

        65.48

1982

                25.83

2006

        65.81

1983

                34.36

2007

        69.67

1984

                37.42

2008

        68.94

1985

                36.43

2009

        62.43

1986

                38.85

2010

        57.22

1987

                35.94

2011

        57.49

1988

                34.62

2012

        58.70

Explanation / Answer

a. We can plot the problem in Excel

the pattern is trend

b.

Yt = a + bYt-1 + cYt-2 + dYt-3 + et

By using R, the estimate model is

The code is

T=seq(1965,2012,1)
y=c(26.96,29.14,26.88,23.01,23.9,24.96,26.23,27.18,24.88,26.68,26.98,27.46,28.57,
28.28,30.27,30.7,34.02,25.38,34.36,37.42,36.43,38.85,35.94,34.62,38.1,39.61,42.1,
46.81,44.97,50.42,52.86,58.55,57.74,54.39,51.74,53.84, 58.96,57.62,58.93,64.57,
65.48,65.81,69.67,68.94,62.43,57.22,57.94,58.7)
arima(y,c(3,0,0))

Call:
arima(x = y, order = c(3, 0, 0))

Coefficients:
         ar1      ar2     ar3 intercept
      0.9636 -0.0174 0.0311    42.7746
s.e. 0.1436   0.2018 0.1444    12.4164

sigma^2 estimated as 10.98: log likelihood = -127.14, aic = 264.28

Yt = 42.77 + 0.9636Yt-1 -0.0174Yt-2 + 0.0311Yt-3 + et

c.

predict(x, n.ahead=4)

$pred
Time Series:
Start = 49
End = 52
Frequency = 1
[1] 58.30548 57.93444 57.60737 57.28640

$se
Time Series:
Start = 49
End = 52
Frequency = 1
[1] 3.313108 4.601014 5.502961 6.246807


d.

PP.test(y)

        Phillips-Perron Unit Root Test

data: y
Dickey-Fuller = -2.5909, Truncation lag parameter = 3, p-value = 0.3382

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote