Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

One of the primary advantages of a repeated-measures design compared to independ

ID: 3152065 • Letter: O

Question

One of the primary advantages of a repeated-measures design compared to independent-measures, is that it reduces the overall variability by removing variance caused by individual differences. The following data are from a research study comparing two treatment condition

(a) Assume that the data are from an independent-measures study using two separate samples, each with n = 6 participants. Compute the pooled variance and the estimated standard error for the mean difference. (Use 3 decimal places.)

sp2 =

sMD =

(b) Now assume that the data are from a repeated-measures study using the same sample of n = 6 participants in both treatment conditions. Compute the variance for the sample of difference scores and the estimated standard error for the mean difference. (You should find that the repeated-measures design substantially reduces the variance and the standard error.) (Use 3 decimal places.)

s2 =

sMD =

Treatment 1 Treatment 2 Difference 12 14 8 8 3 5 M = 8.333 13 15 3 8 0 4 2 M = 9.667 M = 1.333 SS= 85.33333 SS= 83.33333 SS= 5.33333

Explanation / Answer

a)

              
Calculating the standard deviations of each group,              
              
s1 =    4.131182236          
s2 =    4.082482905          
              
Thus, the pooled standard deviation is given by              
              
Sp = sqrt[((n1 - 1)s1^2 + (n2 - 1)(s2^2))/(n1 + n2 - 2)]               
              
As n1 =    6   , n2 =    6  
              
Then              
              
Sp =    4.106904755          

Sp^2 =    16.86666667 [ANSWER, POOLED VARIANCE]

************************************
          
Thus, the standard error of the difference is              
              
SMD = Sp sqrt (1/n1 + 1/n2) =    2.371122566   [ANSWER]

***********************************

b)      
              
Calculating the standard deviation of the differences (third column):              
              
s =    0.984731928          

Hence,
              
s^2 = 0.96969697 [ANSWER]

Here, n = 6.

Thus, the standard error of the difference is sD = s/sqrt(n):              
              
sMD =    0.402015126   [ANSWER]