Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A survey found that women\'s heights are normally distributed with mean 62.6 in.

ID: 3151359 • Letter: A

Question

A survey found that women's heights are normally distributed with mean 62.6 in. and standard deviation 2.7 in. The survey also found that men's heights are normally distributed with a mean 68.1 in. and standard deviation 2.7. Complete parts a through c below. a. Most of the live characters at an amusement park have height requirements with a minimum of 4 ft 9 in. and a maximum of 6 ft 2 in. Find the percentage of women meeting the height requirement. The percentage of women who meet the height requirement is %. (Round to two decimal places as needed.) b. Find the percentage of men meeting the height requirement. The percentage of men who meet the height requirement is %. (Round to two decimal places as needed.) c. If the height requirements are changed to exclude only the tallest 5% of men and the shortest 5% of women, what are the new height requirements? The new height requirements are at least in. and at most in. (Round to one decimal place as needed.) Show work

Explanation / Answer

a)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    57      
x2 = upper bound =    74      
u = mean =    62.6      
          
s = standard deviation =    2.7      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -2.074074074      
z2 = upper z score = (x2 - u) / s =    4.222222222      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.019036216      
P(z < z2) =    0.999987905      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.980951689 and 98.0951689%   [ANSWER]

*********************

b)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    57      
x2 = upper bound =    74      
u = mean =    68.1      
          
s = standard deviation =    2.7      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -4.111111111      
z2 = upper z score = (x2 - u) / s =    2.185185185      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    1.9688E-05      
P(z < z2) =    0.985562364      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.985542676 = 98.5542676% [ANSWER]

**********************

c)

FOR THE LOWER BOUND:

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.05      
          
Then, using table or technology,          
          
z =    -1.644853627      
          
As x = u + z * s,          
          
where          
          
u = mean =    62.6      
z = the critical z score =    -1.644853627      
s = standard deviation =    2.7      
          
Then          
          
x = critical value =    58.15889521      

FOR THE UPPER BOUND:

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.95      
          
Then, using table or technology,          
          
z =    1.644853627      
          
As x = u + z * s,          
          
where          
          
u = mean =    68.1      
z = the critical z score =    1.644853627      
s = standard deviation =    2.7      
          
Then          
          
x = critical value =    72.54110479      

Hence,

it is between 58.15889521 and 72.54110479. [ANSWER]
  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote