THe following data set contains data on Blood Alcohol Content (BAC) for a set of
ID: 3150194 • Letter: T
Question
THe following data set contains data on Blood Alcohol Content (BAC) for a set of men who drank a particular number of beers over a one hour period. We wish to predict BAC from the number of beers consumed using simple regression. The commands you need are in Minitab under Stat>Regression. To do a prediction, click on the "Options" box in the regression command. Type the value of the X variable into the box "Prediction Intervals for new observations."
Beers BAC
5 0.1
2 0.03
9 0.19
8 0.12
3 0.04
7 0.095
3 0.07
5 0.06
3 0.02
5 0.05
4 0.07
6 0.1
5 0.085
7 0.09
1 0.01
4 0.05
Create a 90% confidence interval for the slope coefficient.
A.) The degrees of freedom for the t-statistic are
B.)The correct t value (the value from the t-distribution that is necessary for calculating the confidence interval) is (three decimals)
C.) I am 90% confident that the population slope coefficient, 1 is in the interval (round your values to the nearest integer): [ , ]
Explanation / Answer
Let independent variable x = beers and
dependent variable y = BAC.
Here we have to do regression in MINITAB.
Steps in MINITAB :
Stat --> Regression --> Regression --> Response : y --> Predictors : x --> Options : Prediction interval for new observations : x --> Confidence level : 90% --> ok --> Results : select second option --> ok --> ok
Output is,
Regression Analysis: y versus x
The regression equation is
y = - 0.0127 + 0.0180 x
Predictor Coef SE Coef T P
Constant -0.01270 0.01264 -1.00 0.332
x 0.017964 0.002402 7.48 0.000
S = 0.0204410 R-Sq = 80.0% R-Sq(adj) = 78.6%
Analysis of Variance
Source DF SS MS F P
Regression 1 0.023375 0.023375 55.94 0.000
Residual Error 14 0.005850 0.000418
Total 15 0.029225
Predicted Values for New Observations
New
Obs Fit SE Fit 90% CI 90% PI
1 0.07712 0.00513 ( 0.06808, 0.08615) ( 0.04000, 0.11424)
2 0.02323 0.00847 ( 0.00831, 0.03815) (-0.01574, 0.06220)
3 0.14897 0.01128 ( 0.12910, 0.16884) ( 0.10785, 0.19009)
4 0.13101 0.00920 ( 0.11480, 0.14722) ( 0.09152, 0.17049)
5 0.04119 0.00671 ( 0.02937, 0.05301) ( 0.00330, 0.07909)
6 0.11305 0.00733 ( 0.10014, 0.12595) ( 0.07480, 0.15129)
7 0.04119 0.00671 ( 0.02937, 0.05301) ( 0.00330, 0.07909)
8 0.07712 0.00513 ( 0.06808, 0.08615) ( 0.04000, 0.11424)
9 0.04119 0.00671 ( 0.02937, 0.05301) ( 0.00330, 0.07909)
10 0.07712 0.00513 ( 0.06808, 0.08615) ( 0.04000, 0.11424)
11 0.05915 0.00547 ( 0.04952, 0.06879) ( 0.02188, 0.09642)
12 0.09508 0.00585 ( 0.08477, 0.10539) ( 0.05763, 0.13253)
13 0.07712 0.00513 ( 0.06808, 0.08615) ( 0.04000, 0.11424)
14 0.11305 0.00733 ( 0.10014, 0.12595) ( 0.07480, 0.15129)
15 0.00526 0.01049 (-0.01321, 0.02373) (-0.03520, 0.04573)
16 0.05915 0.00547 ( 0.04952, 0.06879) ( 0.02188, 0.09642)
Values of Predictors for New Observations
New
Obs x
1 5.00
2 2.00
3 9.00
4 8.00
5 3.00
6 7.00
7 3.00
8 5.00
9 3.00
10 5.00
11 4.00
12 6.00
13 5.00
14 7.00
15 1.00
16 4.00
The degrees of freedom for the t-statistic are 14.
The correct t value is 7.480.
90% confidence interval for population slope coefficient is,
b - E < 1 < b + E
where b is slope for x.
E is the margin of error.
E = tc * Sb1
tc is critical value for t-distribution.
Sb1 is the standard error for x.
Sb1 = 0.002402
tc we can find by using EXCEL.
syntax is,
=TINV(probability, deg_freedom)
where, probability = 1 - c
c is confidence level = 90% = 0.90
probability = 1 - 0.90 = 0.10
deg_freedom = 14
tc = 1.7613
E = 1.7613 * 0.002402 = 0.0042
lower limit = 0.0180 - 0.0042 = 0.0138
upper limit = 0.0180 + 0.0042 = 0.0222
I am 90% confident that the population slope coefficient, 1 is in the interval [0.0138, 0.0222].
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.