Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Roofing injuries. According to a study conducted by the California Division of L

ID: 3149968 • Letter: R

Question

Roofing injuries. According to a study conducted by the California Division of Labor Research and Statistics, roofing is one of the most hazardous occupations. Of 2,514 worker injuries that caused absences for a full workday or shift after the injury, 23% were attributable to falls from high elevations on level surfaces, 21% to falling hand tools or other materials, 19% to overexertion, and 20% to burns or scalds. Assume that the 2,514 injuries can be regarded as a random sample from the population of all roofing injuries in California.

a. Construct a 95% confidence interval for the proportion of all injuries that are due to falls.

b. Construct a 95% confidence interval for the proportion of all injuries that are due to burns or scalds.

Please, show your work.

Explanation / Answer

a)

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.23          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.008393182          
              
Now, for the critical z,              
alpha/2 =   0.025          
Thus, z(alpha/2) =    1.959963985          
Thus,              
Margin of error = z(alpha/2)*sp =    0.016450335          
lower bound = p^ - z(alpha/2) * sp =   0.213549665          
upper bound = p^ + z(alpha/2) * sp =    0.246450335          
              
Thus, the confidence interval is              
              
(   0.213549665   ,   0.246450335   ) [ANSWER]

*******************************

b)

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.2          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.007977694          
              
Now, for the critical z,              
alpha/2 =   0.025          
Thus, z(alpha/2) =    1.959963985          
Thus,              
Margin of error = z(alpha/2)*sp =    0.015635992          
lower bound = p^ - z(alpha/2) * sp =   0.184364008          
upper bound = p^ + z(alpha/2) * sp =    0.215635992          
              
Thus, the confidence interval is              
              
(   0.184364008   ,   0.215635992   ) [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Chat Now And Get Quote