Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

One-Sample Statistics N Mean Std. Deviation Std. Error Mean HOW MUCH FEAR- BEING

ID: 3135540 • Letter: O

Question

One-Sample Statistics

N

Mean

Std. Deviation

Std. Error Mean

HOW MUCH FEAR- BEING ROBBED OR MUGGED ON STREET

2231

5.00

3.280

.069

One-Sample Test

Test Value = 0

t

df

Sig. (2-tailed)

Mean Difference

95% Confidence Interval of the Difference

Lower

HOW MUCH FEAR- BEING ROBBED OR MUGGED ON STREET

72.028

2230

.000

5.001

4.87

One-Sample Test

Test Value = 0

95% Confidence Interval of the Difference

Upper

HOW MUCH FEAR- BEING ROBBED OR MUGGED ON STREET

5.14

Suppose we want to determine if the mean for fear of being robbed in our data set is different from a hypothetical population mean for fear of being robbed equal to 7. Be sure that your alpha level is .05 (95% confidence interval). Interpret your results. What do you conclude?

One-Sample Statistics

N

Mean

Std. Deviation

Std. Error Mean

HOW MUCH FEAR- BEING ROBBED OR MUGGED ON STREET

2231

5.00

3.280

.069

Explanation / Answer

Formulating the null and alternative hypotheses,              
              
Ho:   u   =   7  
Ha:    u   =/   7  
              
As we can see, this is a    two   tailed test.      
              
Thus, getting the critical t,              
df = n - 1 =    2230          
tcrit =    +/-   1.961028351      
              
Getting the test statistic, as              
              
X = sample mean =    5          
uo = hypothesized mean =    7          
n = sample size =    2231          
s = standard deviation =    3.28          
              
Thus, t = (X - uo) * sqrt(n) / s =    -28.8008919          
              
Also, the p value is              
              
p =    2.3532E-155          
              
As |t| > 1.96, and P < 0.05, we   REJECT THE NULL HYPOTHESIS.          

Hence, there is significant evidence at 0.05 level that the mean for fear of being robbed in our data set is different from a hypothetical population mean for fear of being robbed equal to 7. [CONCLUSION]