Example 1- Estimate the standard error of the mean for the following scores: 6 8
ID: 3134607 • Letter: E
Question
Example 1- Estimate the standard error of the mean for the following scores: 6 8 4 3 8 10 17 4 6 Step 1: x= ex/n = 66/9= 7.33 step 2: s zx2/n= x2 + 630/9 - 53.78 16.222 = 4.03 step 3 sx = 4.03/ 9-1 sx= 1.42
Using the same formula in Example 1 calculate the following: A criminologist collects information on the number of drug arrests among a group of individuals who are currently incarcerated. Estimate the standard error of the mean from their responses.
2 0 3 1 2 3 0 2 0 1 4 7 2 1 2 2 4
0 0 2 2 3 1 0 0 2 4 1 1 2 0 1 3 6
Explanation / Answer
Getting the mean, X,
X = Sum(x) / n
Summing the items, Sum(x) = 64
As n = 34
Thus,
X = 1.882352941
Setting up tables,
Thus, Sum(x - X)^2 = 95.52941176
Thus, as
s^2 = Sum(x - X)^2 / (n - 1)
As n = 34
s^2 = 2.89483066
Thus,
s = 1.701420189
Hence,
standard error = s/sqrt(n) = 1.701420189/sqrt(34) = 0.291791155 [ANSWER]
x x - X (x - X)^2 2 0.117647 0.013841 0 -1.88235 3.543253 3 1.117647 1.249135 1 -0.88235 0.778547 2 0.117647 0.013841 3 1.117647 1.249135 0 -1.88235 3.543253 2 0.117647 0.013841 0 -1.88235 3.543253 1 -0.88235 0.778547 4 2.117647 4.484429 7 5.117647 26.19031 2 0.117647 0.013841 1 -0.88235 0.778547 2 0.117647 0.013841 2 0.117647 0.013841 4 2.117647 4.484429 0 -1.88235 3.543253 0 -1.88235 3.543253 2 0.117647 0.013841 2 0.117647 0.013841 3 1.117647 1.249135 1 -0.88235 0.778547 0 -1.88235 3.543253 0 -1.88235 3.543253 2 0.117647 0.013841 4 2.117647 4.484429 1 -0.88235 0.778547 1 -0.88235 0.778547 2 0.117647 0.013841 0 -1.88235 3.543253 1 -0.88235 0.778547 3 1.117647 1.249135 6 4.117647 16.95502Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.