A certain type of digital camera comes in either a 3-megapixel version or a 4-me
ID: 3133009 • Letter: A
Question
A certain type of digital camera comes in either a 3-megapixel version or a 4-megapixel version. A camera store has received a shipment of 18 of these cameras, of which 6 have 3-megapixel resolution. Suppose that 5 of these cameras are randomly selected to be stored behind the counter: the other 13 are placed in a storeroom. Let X = the number of 3-megapixel cameras among the 5 selected for behind the counter storage. Compute P(X = 2). Compute P(X greater then 2). Calculate the mean of X. Calculate the standard deviation of X.Explanation / Answer
The probability that a camera is megapixel is: 6/18=0.33
Using Binomial distribution find:
(a)The required probability is:
P(X=2)
=5C2*0.33^2*0.67^3
=0.327
(b)The required probability is:
P(X>2)
=5C3*0.33^3*0.67^2+…+5C5*0.33^5*0.67^0
=0.204
c)The mean is np=18*0.33=5.94
The standard deviation is sq rt np(1-p)=1.99
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.