Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Using any of the independent variables, create and report the best fitting linea

ID: 3132855 • Letter: U

Question

Using any of the independent variables, create and report the best fitting linear model to predict the selling price of the house. Use the following criteria to make your decision:

Significance of the overall model

Significance of the coefficients

Coefficient of Determination

Standard Error of the Regression

Explain why you chose the linear equation you did and use those criteria to support your decision.

Price Bedrooms Size Pool Distance Garage Baths Twnship 263.1 4 2300 1 17 1 2 5 182.4 4 2100 0 19 0 2 4 242.1 3 2300 0 12 0 2 3 213.6 2 2200 0 16 0 2.5 2 139.9 2 2100 0 28 0 1.5 1 245.4 2 2100 1 12 1 2 1 327.2 6 2500 0 15 1 2 3 271.8 2 2100 0 9 1 2.5 2 221.1 3 2300 1 18 0 1.5 1 266.6 4 2400 0 13 1 2 4 292.4 4 2100 0 14 1 2 3 209 2 1700 0 8 1 1.5 4 270.8 6 2500 0 7 1 2 4 246.1 4 2100 0 18 1 2 3 194.4 2 2300 0 11 0 2 3 281.3 3 2100 0 16 1 2 2 172.7 4 2200 1 16 0 2 3 207.5 5 2300 1 21 0 2.5 4 198.9 3 2200 1 10 1 2 4 209.3 6 1900 1 15 1 2 4 252.3 4 2600 0 8 1 2 4 192.9 4 1900 1 14 1 2.5 2 209.3 5 2100 0 20 0 1.5 5 345.3 8 2600 0 9 1 2 4 326.3 6 2100 0 11 1 3 5 173.1 2 2200 1 21 1 1.5 5 187 2 1900 0 26 0 2 4 257.2 2 2100 0 9 1 2 4 233 3 2200 0 14 1 1.5 3 180.4 2 2000 0 11 0 2 5 234 2 1700 0 19 1 2 3 207.1 2 2000 0 11 1 2 5 247.7 5 2400 0 16 1 2 2 166.2 3 2000 1 16 1 2 2 177.1 2 1900 0 10 1 2 5 182.7 4 2000 1 14 0 2.5 4 216 4 2300 0 19 0 2 2 312.1 6 2600 0 7 1 2.5 5 199.8 3 2100 0 19 1 2 3 273.2 5 2200 0 16 1 3 2 206 3 2100 1 9 0 1.5 3 232.2 3 1900 1 16 1 1.5 1 198.3 4 2100 1 19 1 1.5 1 205.1 3 2000 1 20 0 2 4 175.6 4 2300 1 24 1 2 4 307.8 3 2400 1 21 1 3 2 269.2 5 2200 0 8 1 3 5 224.8 3 2200 0 17 1 2.5 1 171.6 3 2000 1 16 0 2 4 216.8 3 2200 0 15 1 2 1 192.6 6 2200 1 14 0 2 1 236.4 5 2200 0 20 1 2 3 172.4 3 2200 0 23 0 2 3 251.4 3 1900 0 12 1 2 2 246 6 2300 0 7 1 3 3 147.4 6 1700 1 12 0 2 1 176 4 2200 0 15 1 2 1 228.4 3 2300 0 17 1 1.5 5 166.5 3 1600 1 19 0 2.5 3 189.4 4 2200 0 24 1 2 1 312.1 7 2400 0 13 1 3 3 289.8 6 2000 0 21 1 3 3 269.9 5 2200 1 11 1 2.5 4 154.3 2 2000 0 13 0 2 2 222.1 2 2100 0 9 1 2 5 209.7 5 2200 1 13 1 2 2 190.9 3 2200 1 18 1 2 3 254.3 4 2500 1 15 1 2 3 207.5 3 2100 1 10 0 2 2 209.7 4 2200 1 19 1 2 2 294 2 2100 0 13 1 2.5 2 176.3 2 2000 1 17 0 2 3 294.3 7 2400 0 8 1 2 4 224 3 1900 1 6 1 2 1 125 2 1900 0 18 0 1.5 4 236.8 4 2600 1 17 1 2 5 164.1 4 2300 0 19 0 2 4 217.8 3 2500 0 12 0 2 3 192.2 2 2400 0 16 0 2.5 2 125.9 2 2400 0 28 0 1.5 1 220.9 2 2300 1 12 1 2 1 294.5 6 2700 0 15 1 2 3 244.6 2 2300 0 9 1 2.5 2 199 3 2500 1 18 0 1.5 1 240 4 2600 0 13 1 2 4 263.2 4 2300 0 14 1 2 3 188.1 2 1900 0 8 1 1.5 4 243.7 6 2700 0 7 1 2 4 221.5 4 2300 0 18 1 2 3 175 2 2500 0 11 0 2 3 253.2 3 2300 0 16 1 2 2 155.4 4 2400 1 16 0 2 3 186.7 5 2500 1 21 0 2.5 4 179 3 2400 1 10 1 2 4 188.3 6 2100 1 15 1 2 4 227.1 4 2900 0 8 1 2 4 173.6 4 2100 1 14 1 2.5 2 188.3 5 2300 0 20 0 1.5 5 310.8 8 2900 0 9 1 2 4 293.7 6 2400 0 11 1 3 5 179 3 2400 0 8 1 2 4 188.3 6 2100 1 14 1 2.5 2 227.1 4 2900 0 20 0 1.5 5 173.6 4 2100 0 9 1 2 4 188.3 5 2300 0 11 1 3 5

Explanation / Answer

Using any of the independent variables, create and report the best fitting linear model to predict the selling price of the house. Use the following criteria to make your decision:

Solution:

The regression model for the prediction of the selling price of the house is given as below:

Regression Analysis

Regression Statistics

Multiple R

0.6204

R Square

0.3849

Adjusted R Square

0.3538

Standard Error

37.8652

Observations

105

ANOVA

df

SS

MS

F

Significance F

Regression

5

88823.9147

17764.7829

12.3902

0.0000

Residual

99

141943.6744

1433.7745

Total

104

230767.5891

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

63.7500

44.5294

1.4316

0.1554

-24.6060

152.1060

Bedrooms

8.2762

2.8797

2.8740

0.0050

2.5623

13.9902

Size

0.0458

0.0164

2.7884

0.0064

0.0132

0.0784

Distance

-2.2898

0.7962

-2.8759

0.0049

-3.8697

-0.7099

Baths

29.3405

10.2173

2.8716

0.0050

9.0671

49.6139

Twnship

-1.1316

3.0191

-0.3748

0.7086

-7.1221

4.8589

Significance of the overall model

For the purpose of the prediction of the selling price of the house, we assume the level of significance or the alpha value as 0.05 or 5%.

Significance of the coefficients

For this regression analysis, we get the multiple correlation coefficient as 0.6204, which means, there is a considerably high positive linear relationship exists between the dependent variable price of the house and independent variables such as number of bedrooms, size, distance, baths, township, etc.

Coefficient of Determination

The value of the R square or the coefficient of determination for this regression model is given as 0.3849, this means about 38.49% of the variation in the dependent variable price of the house is explained by the independent variables such as number of bedrooms, size, distance, baths, township, etc.

Standard Error of the Regression

The standard error for this regression analysis is given as 37.8652 which we consider during the prediction or estimation of the price of the house.

Explain why you chose the linear equation you did and use those criteria to support your decision.

It is observed that there is a linear relationship exists between the pairs of the variables so we choose the linear equation for the regression analysis. For this regression model, we get the p-value as 0.00 which is less than the given level of significance 0.05, so we reject the null hypothesis that the given regression model is significant.

Regression Analysis

Regression Statistics

Multiple R

0.6204

R Square

0.3849

Adjusted R Square

0.3538

Standard Error

37.8652

Observations

105

ANOVA

df

SS

MS

F

Significance F

Regression

5

88823.9147

17764.7829

12.3902

0.0000

Residual

99

141943.6744

1433.7745

Total

104

230767.5891

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

63.7500

44.5294

1.4316

0.1554

-24.6060

152.1060

Bedrooms

8.2762

2.8797

2.8740

0.0050

2.5623

13.9902

Size

0.0458

0.0164

2.7884

0.0064

0.0132

0.0784

Distance

-2.2898

0.7962

-2.8759

0.0049

-3.8697

-0.7099

Baths

29.3405

10.2173

2.8716

0.0050

9.0671

49.6139

Twnship

-1.1316

3.0191

-0.3748

0.7086

-7.1221

4.8589

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote