Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Two independent vendors supply cement to a highway contractor. Through previous

ID: 3132086 • Letter: T

Question

Two independent vendors supply cement to a highway contractor. Through previous experience it is known that the compressive strength of samples of cement can be modeled by a normal distribution, with mu_1 = 6000 kilograms per square centimeter and sigma_1 = 100 kilograms per square centimeter for vendor 1, and mu_2 = 5825 and sigma_2 = 90 for vendor 2. What is the probability that both vendors supply a sample with compressive strength: Round your final answers to four decimal places (e.g. 98.7654). Less than 6100 kg/cm^2? Between 5800 and 6050? In excess of 6200? (Use Appendix A, Table I. Round value of standard normal random variable to 2 decimal places.)

Explanation / Answer

a)

FOR VENDOR 1:

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    6100      
u = mean =    6000      
          
s = standard deviation =    100      
          
Thus,          
          
z = (x - u) / s =    1      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   1   ) =    0.8413

FOR VENDOR 2:

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    6100      
u = mean =    5825      
          
s = standard deviation =    90      
          
Thus,          
          
z = (x - u) / s =    3.06      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   3.06   ) =    0.9989

Hence,

P(both) = 0.8413*0.9989 = 0.8404 [ANSWER]

*************************************************************************************************************************************

b)

FOR VENDOR 1:

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    5800      
x2 = upper bound =    6050      
u = mean =    6000      
          
s = standard deviation =    100      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -2      
z2 = upper z score = (x2 - u) / s =    0.5      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.0228      
P(z < z2) =    0.6915      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.6687      

FOR VENDOR 2:

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    5800      
x2 = upper bound =    6050      
u = mean =    5825      
          
s = standard deviation =    90      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.28      
z2 = upper z score = (x2 - u) / s =    2.5      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.3897      
P(z < z2) =    0.9938      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.6041      

Hence,

P(both) = 0.6687*0.6041 = 0.4040 [ANSWER]


******************************************************************************************************************************

c)

FOR VENDOR 1:

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    6200      
u = mean =    6000      
          
s = standard deviation =    100      
          
Thus,          
          
z = (x - u) / s =    2      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   2   ) =    0.0228

FOR VENDOR 2:

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    6200      
u = mean =    5825      
          
s = standard deviation =    90      
          
Thus,          
          
z = (x - u) / s =    4.17      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   4.17   ) =    0

Hence,

P(both) = 0.0228*0 = 0 [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote