Linear Regression Results quiz 9 The REG Procedure Model: Linear_Regression_Mode
ID: 3127673 • Letter: L
Question
Linear Regression Results quiz 9
The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: Y
Number of Observations Read
31
Number of Observations Used
31
Analysis of Variance
Source
DF
Sum of
Squares
Mean
Square
F Value
Pr > F
Model
2
59753
29876
49.80
<.0001
Error
28
16799
599.94742
Corrected Total
30
76551
Root MSE
24.49382
R-Square
0.7806
Dependent Mean
133.77419
Adj R-Sq
0.7649
Coeff Var
18.30983
Parameter Estimates
Variable
DF
Parameter
Estimate
Standard
Error
t Value
Pr > |t|
95% Confidence Limits
Intercept
1
28.72150
19.24888
1.49
0.1469
-10.70803
68.15104
X1
1
1.72216
0.17259
9.98
<.0001
1.36863
2.07569
X2
1
3.14015
1.64490
1.91
0.0666
-0.22927
6.50957
Generated by the SAS System (Local, XP_PRO) on 01JUL2010 at 8:43 AM
X1
X2
Y
predicted_Y
lclm_Y
uclm_Y
lcl_Y
ucl_Y
residual_Y
27
13
124
116.0419044
101.3022
130.7816
63.74829
168.3355
7.958095614
82
11
198
204.480575
186.9
222.0612
151.3163
257.6448
-6.48057497
11
7
75
69.64637309
51.49078
87.80197
16.2892
123.0035
5.353626911
56
12
182
162.8444845
149.6269
176.0621
110.9593
214.7296
19.15551549
15
12
80
92.23579244
77.55883
106.9128
39.95984
144.5117
-12.2357924
32
10
125
115.2322606
105.3849
125.0796
64.10171
166.3628
9.767739386
15
7
74
76.53502597
59.36529
93.70476
23.5052
129.5648
-2.53502597
37
9
129
120.7029234
111.0457
130.3601
69.60866
171.7972
8.297076572
27
7
165
97.20098463
82.56136
111.8406
44.9355
149.4665
67.79901537
13
9
46
79.37100612
64.87381
93.8682
27.14523
131.5968
-33.3710061
50
9
153
143.0910453
133.6014
152.5807
92.02819
194.1539
9.908954696
37
15
137
139.5438432
119.7008
159.3869
85.58915
193.4985
-2.54384318
68
7
162
167.8096767
153.2863
182.3331
115.5766
220.0427
-5.8096767
17
11
104
92.53996559
79.3753
105.7046
40.66829
144.4116
11.46003441
56
6
140
144.0035648
128.6644
159.3427
91.53785
196.4693
-4.00356475
37
8
114
117.5627701
106.488
128.6376
66.18171
168.9438
-3.56277014
53
6
192
138.8370751
123.6206
154.0536
86.40708
191.2671
53.16292491
17
13
115
98.82027217
82.79669
114.8439
46.15038
151.4902
16.17972783
26
10
133
104.8992813
94.05075
115.7478
53.56651
156.2321
28.10071871
70
14
213
193.2350762
172.4939
213.9762
138.9437
247.5265
19.76492381
82
8
175
195.0601151
178.546
211.5742
142.2389
247.8813
-20.0601151
62
11
188
170.0373105
157.5947
182.4799
118.3442
221.7304
17.96268945
84
10
204
204.7847481
187.6284
221.9411
151.7593
257.8102
-0.78474812
43
6
85
121.6154429
106.276
136.9549
69.14965
174.0812
-36.6154429
59
9
148
158.5905143
147.9802
169.2008
107.3076
209.8735
-10.5905143
8
14
55
86.46095647
66.82185
106.1001
32.58093
140.341
-31.4609565
75
8
155
183.0049725
168.3037
197.7062
130.7222
235.2878
-28.0049725
8
6
29
61.33973013
40.23783
82.44163
6.909476
115.77
-32.3397301
79
9
179
193.0337787
177.7
208.3676
140.5696
245.4979
-14.0337787
11
15
75
94.76759943
73.28023
116.255
40.18675
149.3485
-19.7675994
87
8
193
203.6709312
185.7646
221.5772
150.3981
256.9438
-10.6709312
Quiz 9
A dealer of matchbox cars believes that the price received for the cars at an auction increases with the age (X1) of the cars and with the number of people bidding (X2) on the car. Data was collected at a big national show and auction in Chicago Illinois and is presented on blackboard.
Now using SAS only answer the following: The instructions are on page 2.
1. Write down the regression model.
2. Write down the prediction equation.
3. Predict y when the age is 11 years and the # of bidders is 15. What is the residual?
4. SSE =
S2 =
S =
R2 = now interpret R2.
5. Write down 95% confidence intervals for b1 and b2.
6. Test if the age of the car is a significant variable.
7. Test if the number of bidders is a significant variable.
8. Find the 95% confidence interval for E(Y) when the age is 11 years and the # of bidders is 15.
9. Find the 95% prediction interval for Y when the age is 11 years and the # of bidders is 15.
1. Click on start -- go to programs -- go to SAS -- go to Enterprise Guide 4.0
a. a. If you get the welcome window then x it out.
b. Go up to file and down to import data (after downloading from black board )
c. click on local computer
d. click on the correct data file(it will be an excel file) then click open
e. click the first file name in the next window and then click open
d. then click run in the next window
f. when the data appears then you are ready to proceed
2. Go up to the menu on the top row and click Analyze and drag down to Regression and over to Linear. Click yes to continue
4. Click on X1, and X2(if using the shift key you can declare them all at once) then click on the right arrow and then click on explanatory variables
a. Click on Y then click on the right arrow and then click on dependent variables
5. Click on statistics then click on confidence limits for parameter estimates and leave at 95%
6. Click on predictions and then click on original sample and residual and prediction limits.
7. Click on titles then click on Use default text (to uncheck it and write your own). Then click in the big box and type the name of the worksheet and your name or names.
8. Then click run (this "submits" or "runs” the program).
9. Then you will see an analysis window. Then print this page using the print command.
10. Then on the left side under Project Explorer, double click on Linear regression predictions and statistics for (the file name you give it). If you have blank columns you may delete them after going up to data and dragging down to read only. There are two columns you will not need. Thus you can delete the last 2 columns. Then print this table.
11. An optional way to print is go up to file and drag down to send to and over to either excel or word. Then print from that file.
Linear Regression Results quiz 9
Explanation / Answer
1)Model:Linear Regression Model
2)y=28.7215+1.72216*(age of car)+3.14015*(# bidders)
3)Check in the data for X1=11,and X2=15 gave a y=75 and predicted=94.7676 and a residual=-19.7676
4)ss=76551,sse=14799 ,R^2=0.7806
5)95% CI
b1= [1.36863,2.07569]
b2=[-0.22927,6.50957]
6)P value of age of car<0.001 Hence it is a significant
7)P value for bidder is 6% which is not significant at 10% level.Hence #bidders is not a significant value
8)95% CI for E[Y]= [73.28023,116.255]
9)95% CI for Y=[40.18675,149.3485]
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.