Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Each of the following is a set of four groups. In each set, determine which grou

ID: 3113867 • Letter: E

Question

Each of the following is a set of four groups. In each set, determine which groups are isomorphic to which others. Prove your answers, and use Exercise A3 where convenient. 1 Z_4 Z_2 times Z_2 P_2 V [P_2 denotes the group of subsets of a two-element set. (See Chapter 3, Exercise C.) V denotes the group of the four complex numbers {i, -i, 1, -1} with respect to multiplication.] 2 S_3 Z_6 Z_3 times Z_2 Z*_7 (Z*_7 denotes the group {1, 2, 3, 4, 5, 6} with multiplication modulo 7. The product modulo 7 of a and b is the remainder of ab after division by 7.) 3 Z_8 P_3 Z_2 times Z_2 times Z_2 D_4 (D_4 is the group of symmetries of the square.) 4The groups having the following Cayley diagrams:

Explanation / Answer

Z4

+

[ 0]

[ 1]

[ 2]

[ 3]

[ 0]

[ 1]

[ 2]

[ 3]

[ 0]

[ 1]

[ 1]

[ 2]

[ 3]

[ 0]

[ 2]

[ 2]

[ 3]

[ 0]

[ 1]

[ 3]

[ 3]

[ 0]

[ 1]

[ 2]

Z2 x Z2

+

([ 0] , [ 0] )

([ 0] , [ 1] )

([ 1] , [ 0] )

([ 1] , [ 1] )

([ 0] , [ 0] )

([ 0] , [ 0] )

([ 0] , [ 1] )

([ 1] , [ 0] )

([ 1] , [ 1] )

([ 0] , [ 1] )

([ 0] , [ 1] )

([ 0] , [ 0] )

([ 1] , [ 1] )

([ 1] , [ 0] )

([ 1] , [ 0] )

([ 1] , [ 0] )

([ 1] , [ 1] )

([ 0] , [ 0] )

([ 0] , [ 1] )

([ 1] , [ 1] )

([ 1] , [ 1] )

([ 1] , [ 0] )

([ 0] , [ 1] )

([ 0] , [ 0] )

P2

*

Æ

{ 1}

{ 2}

{ 1,2}

Æ

Æ

{ 1}

{ 2}

{ 1,2}

{ 1}

{ 1}

Æ

{ 1,2}

{ 2}

{ 2}

{ 2}

{ 1,2}

Æ

{ 1}

{ 1,2}

{ 1,2}

{ 2}

{ 1}

Æ

V

x

i

-i

1

-1

i

-1

1

i

-i

-i

1

-1

-i

i

1

i

-i

1

-1

-1

-i

i

-1

1

Consider Z4 and Z2 x Z2

Z2 x Z2 has ( [ 0] ,[ 0] ) is identity and every element in

Z2 x Z2 has own inverse

Z4 has [ 0] is identity but only one element that is

and [ 2] have own inverse

Consider Z4 and P2

Z4 has [ 2] have own inverse

but P2 has Æ is identity and every element in P2 has own inverse

Then Z4 is non-isomorphic with P2

Consider Z4 and V

Z4 has [ 0] is identity and has one element that is

[ 2] is own inverse and [ 1] ,[ 3] are inverse of each other

V has 1 is identity and has one element that is-1 is own inverse and i,-i are inverse of each other too

Let f : ZV and

f ([ 0] ) = 1

f ( [ 1] ) = i

f ( [ 2] ) = -1

f ( [ 3] ) = -i

Then Z4 @ V

Consider Z2 x Z2 and P2

Z2 x Z2 has ([ 0] ,[ 0] ) is identity

and every element are own inverse

P2 has Æ is identity

and every element are own inverse

Let g : Z2 x ZP2

and g([ 0] , [ 0] ) = Æ

g([ 0] , [ 1] ) = { 1}

g([ 1] , [ 0] ) = { 2}

g([ 1] , [ 1] ) = { 1,2}

Then Z2 x Z2 @ P2

Consider Z2 x Z2 and V

Z2 x Z2 has every element have own inverse

but V has one elements that are -1 are own inverse

Then Z2 x Z2 is non-isomorphic with V

Consider P2 and V

P2 has every elements are own inverse

but V has only one element that is -1 has own inverse

Then P2 is non-isomorphic with V

2)

S3

*

(1)

(12)

(13)

(23)

(123)

(132)

(1)

(1)

(12)

(13)

(23)

(123)

(132)

(12)

(12)

(1)

(123)

(132)

(13)

(23)

(13)

(13)

(132)

(1)

(123)

(23)

(12)

(23)

(23)

(123)

(132)

(1)

(12)

(13)

(123)

(123)

(23)

(12)

(13)

(132)

(1)

(132)

(132)

(13)

(23)

(12)

(1)

(123)

Z6

+

[ 0]

[ 1]

[ 2]

[ 3]

[ 4]

[ 5]

[ 0]

[ 0]

[ 1]

[ 2]

[ 3]

[ 4]

[ 5]

[ 1]

[ 1]

[ 2]

[ 3]

[ 4]

[ 5]

[ 0]

[ 2]

[ 2]

[ 3]

[ 4]

[ 5]

[ 0]

[ 1]

[ 3]

[ 3]

[ 4]

[ 5]

[ 0]

[ 1]

[ 2]

[ 4]

[ 4]

[ 5]

[ 0]

[ 1]

[ 2]

[ 3]

[ 5]

[ 5]

[ 0]

[ 1]

[ 2]

[ 3]

[ 4]

Z3 x Z2

+

([ 0] ,[ 0])

([ 0] ,[ 1])

([ 1] ,[ 0])

([ 1] ,[ 1] )

([ 2] ,[ 0] )

([ 2] ,[ 1] )

([ 0] ,[ 0] )

([ 0] ,[ 0])

([ 0] ,[ 1])

([ 1] ,[ 0])

([ 1] ,[ 1] )

([ 2] ,[ 0] )

([ 2] ,[ 1] )

([ 0] ,[ 1] )

([ 0] ,[ 1])

([ 0] ,[ 0])

([ 1] ,[ 1])

([ 1] ,[ 0] )

([ 2] ,[ 1] )

([ 2] ,[ 0] )

([ 1] ,[ 0] )

([ 1] ,[ 0])

([ 1] ,[ 1])

([ 2] ,[ 0])

([ 2] ,[ 1] )

([ 0] ,[ 0] )

([ 0] ,[ 1] )

([ 1] ,[ 1] )

([ 1] ,[ 1])

([ 1] ,[ 0])

([ 2] ,[ 1])

([ 2] ,[ 0] )

([ 0] ,[ 1] )

([ 0] ,[ 0] )

([ 2] ,[ 0] )

([ 2] ,[ 0])

([ 2] ,[ 1])

([ 0] ,[ 0])

([ 0] ,[ 1] )

([ 1] ,[ 0] )

([ 1] ,[ 1] )

([ 2] ,[ 1] )

([ 2] ,[ 1])

([ 2] ,[ 0])

([ 0] ,[ 1])

([ 0] ,[ 0] )

([ 1] ,[ 1] )

([ 1] ,[ 0] )

Z7*

*

1

2

3

4

5

6

1

1

2

3

4

5

6

2

2

4

6

1

3

5

3

3

6

2

5

1

4

4

4

1

5

2

6

3

5

5

3

1

6

4

2

6

6

5

4

3

2

1

Consider S3 has (1) is identity

and (12) ,(13) ,(23) are own inverse

and (123) is inverse of (132)

Z6 has [ 0] is identity

and [ 3] is own inverse

and [ 1] is inverse of [ 5] , [ 2] is inverse [ 4]

Z3 x Z2 has ( [ 0] , [ 0] ) is identity

and ( [ 0] , [ 1] ) is own inverse

and ( [ 1] , [ 0] ) is inverse of ( [ 2] , [ 0] ) ,

( [ 1] , [ 1] ) is inverse of ( [ 2] , [ 1] )

Z7* has 1 is identity

and 6 is own inverse

and 2 is inverse of 4 , 3 is inverse of 5

From that , can conclude :

S3 is non-isomorphic with Z6

S3 is non-isomorphic with Z3 x Z2

S3 is non-isomorphic with Z7*

Z6 is non-isomorphic with Z7*

Z3 x Z2 is non-isomorphic with Z7*

Consider g : Z6@ Z3 x Z2

g( [ 0] ) = ( [ 0] , [ 0] )

g( [ 3] ) = ( [ 0] , [ 1] )

g( [ 1] ) = ( [ 1] , [ 0] )

g( [ 2] ) = ( [ 1] , [ 1] )

g( [ 4] ) = ( [ 2] , [ 1] )

g( [ 5] ) = ( [ 2] , [ 0] )

Z6 @ Z3 x Z2

3)

Z8

+

[ 0]

[ 1]

[ 2]

[ 3]

[ 4]

[ 5]

[ 6]

[ 7]

[ 0]

[ 0]

[ 1]

[ 2]

[ 3]

[ 4]

[ 5]

[ 6]

[ 7]

[ 1]

[ 1]

[ 2]

[ 3]

[ 4]

[ 5]

[ 6]

[ 7]

[ 0]

[ 2]

[ 2]

[ 3]

[ 4]

[ 5]

[ 6]

[ 7]

[ 0]

[ 1]

[ 3]

[ 3]

[ 4]

[ 5]

[ 6]

[ 7]

[ 0]

[ 1]

[ 2]

[ 4]

[ 4]

[ 5]

[ 6]

[ 7]

[ 0]

[ 1]

[ 2]

[ 3]

[ 5]

[ 5]

[ 6]

[ 7]

[ 0]

[ 1]

[ 2]

[ 3]

[ 4]

[ 6]

[ 6]

[ 7]

[ 0]

[ 1]

[ 2]

[ 3]

[ 4]

[ 5]

[ 7]

[ 7]

[ 0]

[ 1]

[ 2]

[ 3]

[ 4]

[ 5]

[ 6]

P3

*

Æ

{ 1}

{ 2}

{ 3}

{ 1,2}

{ 1,3}

{ 2,3}

{ 1,2,3}

Æ

Æ

{ 1}

{ 2}

{ 3}

{ 1,2}

{ 1,3}

{ 2,3}

{ 1,2,3}

{ 1}

{ 1}

Æ

{ 1,2}

{ 1,3}

{ 2}

{ 3}

{ 1,2,3}

{ 2,3}

{ 2}

{ 2}

{ 1,2}

Æ

{ 2,3}

{ 1}

{ 1,2,3}

{ 3}

{ 1,3}

{ 3}

{ 3}

{ 1,3}

{ 2,3}

Æ

{ 1,2,3}

{ 1}

{ 2}

{ 1,2}

{ 1,2}

{ 1,2}

{ 2}

{ 1}

{ 1,2,3}

Æ

{ 2,3}

{ 1,3}

{ 3}

{ 1,3}

{ 1,3}

{ 3}

{ 1,2,3}

{ 1}

{ 2,3}

Æ

{ 1,2}

{ 2}

{ 2,3}

{ 2,3}

{ 1,2,3}

{ 3}

{ 2}

{ 1,3}

{ 1,2}

Æ

{ 1}

{ 1,2,3}

{ 1,2,3}

{ 2,3}

{ 1,3}

{ 1,2}

{ 3}

{ 2}

{ 1}

Æ

(A*B) = (A-B)È (B-A)

Z2 x Z2 x Z2

+

([ 0] ,[ 0] ,[ 0])

([ 0] ,[ 0] ,[ 1])

([ 0] ,[ 1] ,[ 0])

([ 1] ,[ 0] ,[ 0])

([ 0] ,[ 1] ,[ 1])

([ 1] ,[ 0] ,[ 1])

([ 1] ,[ 1] ,[ 0])

([ 1] ,[ 1] ,[ 1])

([ 0] ,[ 0] ,[ 0] )

([ 0] ,[ 0] ,[ 0])

([ 0] ,[ 0] ,[ 1])

([ 0] ,[ 1] ,[ 0])

([ 1] ,[ 0] ,[ 0])

([ 0] ,[ 1] ,[ 1])

([ 1] ,[ 0] ,[ 1])

([ 1] ,[ 1] ,[ 0])

([ 1] ,[ 1] ,[ 1])

([ 0] ,[ 0] ,[ 1] )

([ 0] ,[ 0] ,[ 1])

([ 0] ,[ 0] ,[ 0])

([ 0] ,[ 1] ,[ 1])

([ 1] ,[ 0] ,[ 1])

([ 0] ,[ 1] ,[ 0])

([ 1] ,[ 0] ,[ 0])

([ 1] ,[ 1] ,[ 1])

([ 1] ,[ 1] ,[ 0])

([ 0] ,[ 1] ,[ 0] )

([ 0] ,[ 1] ,[ 0])

([ 0] ,[ 1] ,[ 1])

([ 0] ,[ 0] ,[ 0])

([ 1] ,[ 1] ,[ 0])

([ 0] ,[ 0] ,[ 1])

([ 1] ,[ 1] ,[ 1])

([ 1] ,[ 0] ,[ 0])

([ 1] ,[ 0] ,[ 1])

([ 1] ,[ 0] ,[ 0] )

([ 1] ,[ 0] ,[ 0])

([ 1] ,[ 0] ,[ 1])

([ 1] ,[ 1] ,[ 0])

([ 0] ,[ 0] ,[ 0])

([ 1] ,[ 1] ,[ 1])

([ 0] ,[ 0] ,[ 1])

([ 0] ,[ 1] ,[ 0])

([ 0] ,[ 1] ,[ 1])

([ 0] ,[ 1] ,[ 1] )

([ 0] ,[ 1] ,[ 1])

([ 0] ,[ 1] ,[ 0])

([ 0] ,[ 0] ,[ 1])

([ 1] ,[ 1] ,[ 1])

([ 0] ,[ 0] ,[ 0])

([ 1] ,[ 1] ,[ 0])

([ 1] ,[ 0] ,[ 1])

([ 1] ,[ 0] ,[ 0])

([ 1] ,[ 0] ,[ 1] )

([ 1] ,[ 0] ,[ 1])

([ 1] ,[ 0] ,[ 0])

([ 1] ,[ 1] ,[ 1])

([ 0] ,[ 0] ,[ 1])

([ 1] ,[ 1] ,[ 0])

([ 0] ,[ 0] ,[ 0])

([ 0] ,[ 1] ,[ 1])

([ 0] ,[ 1] ,[ 0])

([ 1] ,[ 1] ,[ 0] )

([ 1] ,[ 1] ,[ 0])

([ 1] ,[ 1] ,[ 1])

([ 1] ,[ 0] ,[ 0])

([ 0] ,[ 1] ,[ 0])

([ 1] ,[ 0] ,[ 1])

([ 0] ,[ 1] ,[ 1])

([ 0] ,[ 0] ,[ 0])

([ 0] ,[ 0] ,[ 1])

([ 1] ,[ 1] ,[ 1] )

([ 1] ,[ 1] ,[ 1])

([ 1] ,[ 1] ,[ 0])

([ 1] ,[ 0] ,[ 1])

([ 0] ,[ 1] ,[ 1])

([ 1] ,[ 0] ,[ 0])

([ 0] ,[ 1] ,[ 0])

([ 0] ,[ 0] ,[ 1])

([ 0] ,[ 0] ,[ 0])

D4

*

I

H

V

D1

D2

R1

R2

R3

I

I

H

V

D1

D2

R1

R2

R3

H

H

I

R2

R1

R3

D1

V

D2

V

V

R2

I

R3

R1

D2

H

D1

D1

D1

R3

R1

I

R2

V

D2

H

D2

D2

R1

R3

R2

I

H

D1

V

R1

R1

D2

D1

H

V

R2

R3

I

R2

R2

V

H

D2

D1

R3

I

R1

R3

R3

D1

D2

V

H

I

R1

R2

Consider Z8 has [ 0] is identity

and [ 4] is own inverse

and [ 1] is inverse of [ 7] , [ 2] is inverse of [ 6] ,

[ 3] is inverse of [ 5]

P3 has Æ is identity

and every elements are own inverse

Z2 x Z2 x Z2 has ( [ 0] , [ 0] , [ 0] ) is identity

and every elements are own inverse

D4 has I is identity

and H,V,D1,D2,R2 are own inverse

and R1 is inverse of R2

From that , can conclude:

Z8 is non-isomorphic with P2

Z8 is non-isomorphic with Z2 x Z2 x Z2

Z8 is non-isomorphic with D4

P3 is non-isomorphic with D4

D4 is non-isomorphic with Z2 x Z2 x Z2

Consider f : PZ2 x Z2 x Z2

f (Æ ) = ( [ 0] , [ 0] , [ 0] )

f ({ 1} ) = ( [ 0] , [ 0] , [ 1] )

f({ 2} ) = ( [ 0] , [ 1] , [ 0] )

f ({ 3} ) = ( [ 1] , [ 0] , [ 0] )

f ({ 1,2} ) = ( [ 0] , [ 1] , [ 1] )

f ({ 1,3} ) = ( [ 1] , [ 0] , [ 1] )

f ({ 2,3} ) = ( [ 1] , [ 1] , [ 0] )

f ({ 1,2,3} ) = ( [ 1] , [ 1] , [ 1] )

P3 =Z2 x Z2 x Z2

+

[ 0]

[ 1]

[ 2]

[ 3]

[ 0]

[ 1]

[ 2]

[ 3]

[ 0]

[ 1]

[ 1]

[ 2]

[ 3]

[ 0]

[ 2]

[ 2]

[ 3]

[ 0]

[ 1]

[ 3]

[ 3]

[ 0]

[ 1]

[ 2]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote