Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

use the MATLAB function trapez to evaluate the intergral that arisesin electrica

ID: 3110288 • Letter: U

Question

use the MATLAB function trapez to evaluate the intergral that arisesin electrical field theory

for the following values x and r

function trapez(f,a,b,n)

% Compute the integral of a f from a to b using the trapezoid rule

h=(b-a)/n;

disp('_________________________________________________________')

disp([' i xi f(xi) h=',num2str(h) ])

disp('_________________________________________________________')

S=feval(f,a);

fprintf(' %2.0f %12.4f %14.6f ',0,a,S);

for i=1:n-1

   x=a+h*i;

   g=feval(f,x);

   S=S+2*g;

   fprintf(' %2.0f %12.4f %14.6f ',i,x,g);

end

S=S+feval(f,b);

fprintf(' %2.0f %12.4f %14.6f ',n,b,feval(f,b));

INT=h*S/2;

fprintf(' The integral of f(x) is =%16.8f ',INT);

60r f2 11 _ (r)2sin do T.T 1-(-)-S272"O | d pi-T"Jo

Explanation / Answer

%%Without funcyion

x=input('Enter value x=');
r=input('Enter value r=');
f=@(phi) sqrt(1-((x/r)^2*(sin(phi))^2));

a=0;
b=2*pi;
n=100;
h=(b-a)/n;
phi=a:h:b;
for i=1:n+1
    y(i)=f(phi(i));
end
disp('_________________________________________________________')

disp([' i         xi          f(xi)         h=',num2str(h) ])

disp('_________________________________________________________')
for i=1:n+1

or


     fprintf(' %2.0f %12.4f %14.6f ',i,phi(i),f(phi(i)));
end

s=0;
for i=2:n
    s=s+y(i);
end
Int=(h/2)*(y(1)+s+y(n+1))

fprintf('            The integral of f(phi) is =%16.8f ',Int);

%or

% with function

clc;
clear all;
x=input('Enter value x=');
r=input(' Enter valuer=');
a=input('Enter value a=');
b=input('Enter value b=');
n=input('Enter value n=');
f=@(phi) sqrt(1-((x/r)^2*(sin(phi))^2));
trapiz(f,a,b,n)

% note 1 : this programm and below program you should save in one folder

%note 2 : save below program with name ' trapiz.m' otherwise it will not work above program. only you should run %above program

function Int=trapiz(f,a,b,n)
h=(b-a)/n;
phi=a:h:b;
for i=1:n+1
    y(i)=f(phi(i));
end
disp('_________________________________________________________')

disp([' i         xi          f(xi)         h=',num2str(h) ])

disp('_________________________________________________________')
for i=1:n+1
     fprintf(' %2.0f %12.4f %14.6f ',i,phi(i),f(phi(i)));
end

s=0;
for i=2:n
    s=s+y(i);
end

% result for n=10

The integral of f(phi) is =      3.05041254