Given a differential equation y\" + 4y = cos (2x) i) Find the homogeneous soluti
ID: 3109691 • Letter: G
Question
Given a differential equation y" + 4y = cos (2x) i) Find the homogeneous solution y_ H. ii) Find a particular solution of non-homogeneous equation and write the general solution of this equation. a) Solve the following Cauchy -Euler's equation x^2y" - 4xy' + y = 0 b) Write the general solution. Given an initial value problem 2 y" - 3y' + y = 0 i) Find the general solution ii) Find the solution of this initial value problem with the initial conditions y(0) = 2, y(1) = 1 a) Find the general solution to the following non-homogeneous differential equation y" - 8y = -x^2 + 2x b) Find a solution that satisfies the following initial conditions y(0) = 1, y'(0) = 0. (Systems of Equations by elimination method) Solve the following system of differential equations and find the general solutionExplanation / Answer
(8)(1) :
Y'' + 4y = cos 2x
homogeneous solution
Y'' + 4 Y = 0
auxillary equation
D2 + 4 = 0
D = 2 i , -2i
homogeneous solution
Y = A cos 2x + B sin 2x
(8) ( 2) Non homogeneous solution :
Y'' + 4 Y = cos 2x
C.F. = A cos 2x + B sin 2x
Now we find P.I.
1 / ( D2 + 4) cos 2x
= - x /4 cos 2x
general non homogeneous solution
Y = A cos 2x + B sin 2x - x /4 cos 2x
(9 a) :
X2 Y'' - 4 XY' + Y = 0
euler - cauchy equation
D( D-1) - 4 D + 1 = 0
D2 - D - 4 D + 1 = 0
D2 - 5 D + 1= 0
D = 5 + (21)1/2 / 2 , 5 - (21)1/2 / 2
Y = A X{( 5+ (21)^1/2 )/2}x + B X{ ( 5 - ( 21)^1/2) / 2}x
(9 b) :
general solution
Y = A X{( 5+ (21)^1/2 )/2}x + B X{ ( 5 - ( 21)^1/2) / 2}x
(10 a) :
2 Y''+ 3 y' + Y = 0
auxillary equation
2 D2 + 3 D + 1 = 0
( 2 D - 1) ( D - 1) = 0
solution Y = A ex + B e1/2x
(10 b ) initial condition
Y ( 0 ) = 2 , Y' ( 1) = 1
2 = A + B .........(1)
y ' = A ex + B / 2 e1/2x
1 = A e + B /2 e1/2
now solving this using (1) and we get '
A = 2 - 2( 2e - 1) / (2e - e1/2 )
B = 2 ( 2e-1) / ( 2e - e1/2 )
put these values in (*)
Y = 2 - 2( 2e - 1) / (2e - e1/2 ) ex + 2 ( 2e-1) / ( 2e - e1/2 ) e1/2 x
(11 a) :
Y'' - 8 Y = - X2 + 2 X
D2 - 8 = 0
D = 2 (2)1/2 , -2 (2)1/2
C.F. = A e2(2)^1/2 x + B e-2(2)^1/2 x
P.I. =
1 / D2 - 8 ( - X2 + 2X )
- 1/8 ( 1 - D2 / 8) ( - X2 + 2X)
- 1/8 ( - X2 + 2 X + 1/8)
Y = A e2(2)^1/2 x + B e-2(2)^1/2 x - 1/8 ( - X2 + 2 X + 1/8)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.