Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Worldwide sales of mobile phones are a multi-billion dollar business. There is s

ID: 3066540 • Letter: W

Question

Worldwide sales of mobile phones are a multi-billion dollar business. There is severe competition among the major manufacturers to attract higher sales and greater market shares. To achieve this, companies compete with each other on prices. However, for many customers, price may not be as important as the perceived quality of the phone, especially as many phones are offered at “zero price” under various plans and contracts from service providers.

Decision makers and markets at mobile-phone manufacturers would like to know what features of a mobile phone are important to consumers. This would be especially important in helping to design effective marketing and advertising campaigns. A review site reviewed 29 recent models of mobile phones and gave a score out of 100 points. Several characteristics of the phone including pixel density, battery life, whether the phone had a fingerprint scanner along with the operating system were included in the table.

You will use descriptive statistics, inferential statistics and your knowledge of multiple linear regressionto complete this task.

Score (Dependent Variable) and several characteristics (Independent Variables) are given in the Excel file: Assignmentdata.xlsx.

Here is a table describing the variables in the data set:

Variable

Definition

Score

Review of phone in points between 0 and 100

Pixel Density (ppi)

Number of pixels per square inch in the screen

Battery Scores

The number of hours that the phone lasts based on several real-world scenarios including video-use, web browsing and phone calls.

Fingerprint

A dummy variable to indicate if the phone has a fingerprint scanner

Android

Dummy variable to indicate that the phone uses a version of Android

Windows

Dummy variable to indicate that the phone uses a mobile version of Windows

iOS

Dummy variable to indicate that the phone uses iOS

Required:

Calculate the descriptive statistics from the data and display in a table. Be sure to comment on the central tendency, variability and shape for Score, Pixel Density and Battery Score. How would you interpret the mean of dummy variables such as Fingerprint or Android?                                                    (1 Mark)

Draw a graph that displays the distribution of review scores. Be sure to comment on the distribution.

                                                                                                                                                             (1 Mark)

Create a box-and-whisker plot for the distribution of Battery Scores and describe the shape. Is there evidence of outliers in the data?                                                                                                      (1 Mark)

What is the likelihood that a phone will receive a rating higher than a 70 if the battery score measure is greater than a 70? Is the phone rating statistically independent of the battery score? Use a Contingency Table.                                                                                                                                             (2 Marks)

Estimate the 90% confidence interval for the population mean review score of phones.             (1 Mark)

Your supervisor recently stated that older mobiles typically had a battery score of around 50, but have recently been improving. Test his claim at the 5% level of significance.                                    (1 Mark)

Run a multiple linear regression using the data and show the output from Excel. Note: exclude the dummy variable “iOS” when running the multiple regression. Also, remember to tick all the graph options which may help you answer Part N.                                                                                                          (1 Mark)

Is the coefficient estimate for the Battery Score statistically different than zero at the 5% level of significance? Set-up the correct hypothesis test using the results found in the table in Part (G) using both the critical value and p-value approach. Interpret the coefficient estimate of the slope.               (2 Marks)

Interpret the remaining slope coefficient estimates. Discuss whether the signs are what you are expecting and explain your reasoning.                                                                                                           (2 Marks)

Interpret the value of the Adjusted R2. Is there a large difference between the R2 and the Adjusted R2? If so, what may explain the reasoning for this?                                                                                (1/2 Mark)

Is the overall model statistically significant at the 5% level of significance? Use the p-value approach.

                                                                                                                                                           (1/2 Mark)

Based on the results of the regressions, what other factors would have influenced the review score? Provide a couple possible examples and indicate their predicted relationship with the review score if they were included.                                                                                                                                 (1 Mark)

Predict the average review score of a phone with a pixel density of 400 ppi, a battery score of 90 that has a fingerprint scanner and uses Windows if it is appropriate to do so. Show the predicted regression equation.                                                                                                                                         (1 Mark)

Do the results suggest that the data satisfy the assumptions of a linear regression (that is, Linearity, Normality of the Errors, and Homoscedasticity of Errors)? Show using residual plots, normal probability plots and/or histograms and Explain.                                                                                              (2 Marks)

Would these results tell us anything about the average satisfaction that users have with the features of their phones? If not, describe a scenario in how you would construct a sample that reflects users’ satisfaction.

                                                                                                                                                              (1 Mark)

Data:

Variable

Definition

Score

Review of phone in points between 0 and 100

Pixel Density (ppi)

Number of pixels per square inch in the screen

Battery Scores

The number of hours that the phone lasts based on several real-world scenarios including video-use, web browsing and phone calls.

Fingerprint

A dummy variable to indicate if the phone has a fingerprint scanner

Android

Dummy variable to indicate that the phone uses a version of Android

Windows

Dummy variable to indicate that the phone uses a mobile version of Windows

iOS

Dummy variable to indicate that the phone uses iOS

Explanation / Answer

> data1=read.csv(file.choose(),header=T)

> data1

                      Phone Score Pixle.Density..PPI. Battery.Score Fingerprint

1        Samsung Galaxy S9+    91                 529            70           1

2         Samsung Galaxy S9    90                 568            60           1

3                  iPhone X    90                 463            54           0

4                   HTC U11    87                 402            79           1

5               LG Aristo 2    72                 294            48           0

6                    LG X4+    79                 277            60           1

7          Motorola Moto E5    80                 294            60           1

8          Motorola Moto X5    85                 373            66           1

9            Nokia 6 (2018)    89                 401            60           1

10              Sony Xpreia    92                 424            64           1

11          Sony Xperia XA2    86                 424            66           1

12            iPhone 8 Plus    87                 401            54           1

13           Google Pixel 2    90                 441            54           1

14      Microsoft Lumia 650    82                 294           40           0

15        Vodafone Smart V8    83                 401            60           1

16        Vodafone Smart E8    74                 196            44           0

17        Blackberry Motion    85                 401            80           1

18        Blackberry Aurora    82                 267            60           0

19 Hisense Elegance 1 (E76)    80                 401            60           1

20             Hisense U962    70                 196            40           0

21          Hisense T5 Plus    70                 267            44           0

22                 iPhone 7    91                 326            39           1

23                    LG G6    93                 439            60           1

24    Sony Xperia XA2 Ultra    86                 367            72           1

25      Telstra Signature 2    75                 277            56           1

26       Telstra Tough Max2    75                 294            60           1

27           Panasonic P100    71                 294            44           1

28         Sharp R1S FS8028    79                 267           100           1

29           Huawei Enjoy 8    79                 269            58           1

   Android Windows iOS

1        1       0   0

2        1       0   0

3        0       0   1

4        1       0   0

5        1       0   0

6        1       0   0

7        1       0   0

8        1       0   0

9        1       0   0

10       1       0   0

11       1       0   0

12       0       0   1

13       1       0   0

14       0       1   0

15       1       0   0

16       1       0   0

17       1       0   0

18       1       0   0

19       1       0   0

20       1       0   0

21       1       0   0

22       0       0   1

23       1       0   0

24       1       0   0

25       1       0   0

26       1       0   0

27       1       0   0

28       1       0   0

29       1       0   0

> names(data1)

[1] "Phone"               "Score"               "Pixle.Density..PPI."

[4] "Battery.Score"       "Fingerprint"         "Android"           

[7] "Windows"             "iOS"               

a)

> summary(data1)

                      Phone        Score       Pixle.Density..PPI.

Blackberry Aurora       : 1   Min.   :70.00   Min.   :196.0     

Blackberry Motion       : 1   1st Qu.:79.00   1st Qu.:277.0     

Google Pixel 2          : 1   Median :83.00   Median :367.0     

Hisense Elegance 1 (E76): 1   Mean   :82.52   Mean   :353.3     

Hisense T5 Plus         : 1   3rd Qu.:89.00   3rd Qu.:402.0     

Hisense U962            : 1   Max.   :93.00   Max.   :568.0     

(Other)                 :23                                     

Battery.Score     Fingerprint        Android          Windows      

Min.   : 39.00   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000

1st Qu.: 54.00   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:0.00000

Median : 60.00   Median :1.0000   Median :1.0000   Median :0.00000

Mean   : 59.03   Mean   :0.7586   Mean   :0.8621   Mean   :0.03448

3rd Qu.: 64.00   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.00000

Max.   :100.00   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000

                                                                    

      iOS       

Min.   :0.0000

1st Qu.:0.0000

Median :0.0000

Mean   :0.1034

3rd Qu.:0.0000

Max.   :1.0000                  

> attach(data1)

b)

> boxplot(Score)

c)

> boxplot(Battery.Score)

d)

> denominator=length(which(Battery.Score>70))

> denominator

[1] 4

> numerator=length(which(Score>70&Battery.Score>70))

> numerator

[1] 4

Probability = 4/4 = 1
Phone rating is independent of battery score.

e)

> t.test(Score,conf.level=0.9)

        One Sample t-test

data: Score

t = 62.328, df = 28, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

90 percent confidence interval:

80.26508 84.76940

sample estimates:

mean of x

82.51724

f)

> Android=as.factor(Android)

> Fingerprint=as.factor(Fingerprint)

> Windows=as.factor(Fingerprint)

> model=lm(Score~Battery.Score+Android+Fingerprint+Windows+Pixle.Density..PPI.)

> summary(model)

Call:

lm(formula = Score ~ Battery.Score + Android + Fingerprint +

    Windows + Pixle.Density..PPI.)

Residuals:

    Min      1Q Median      3Q     Max

-6.6866 -2.8657 -0.1154 2.0230 6.4086

Coefficients: (1 not defined because of singularities)

                     Estimate Std. Error t value Pr(>|t|)   

(Intercept)         62.958563   4.230129 14.883 1.29e-13 ***

Battery.Score        0.088765   0.068954   1.287 0.21026   

Android1            -6.609877   2.349542 -2.813 0.00963 **

Fingerprint1         2.108157   2.125514   0.992 0.33117   

Windows1                   NA         NA      NA       NA   

Pixle.Density..PPI. 0.052123   0.009291   5.610 8.95e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.897 on 24 degrees of freedom

Multiple R-squared: 0.7439,    Adjusted R-squared: 0.7012

F-statistic: 17.43 on 4 and 24 DF, p-value: 7.908e-07


Battery score is statistically insiginificant since p-value > 0.05.

Adjusted R square = 0.7012 implies that 70.12% of the total variation is explained by the fitted regression model.
There is a difference between R square and adjusted R-square since adjusted R square takes into consideration the number of observations and predictor variables used for the model.

The overall model is statistically significant since p-value is very small.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote