Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

In Problems sketch the areas under the standard normal curve over the indicated

ID: 3063088 • Letter: I

Question

In Problems sketch the areas under the standard normal curve over the indicated intervals and find the specified area. Round Answers to four decimal places. a)TO the left ofz=0 b) To the right of z 0 c) To the left ofz =-1.32 d) To the left of z = 0.72 e) To the right ofz -1.22 f) To the right of z 2.17 )Between z 0 and z 3.18 h) Between z =-1 .40 and z 2.03 i) Between z-125 and z-2.11 j) Between z 1.85 and z= 2.78 k) Either to the left of z=-1.75 or to the right of z = 3.00 Click Save und Submit to save and submit. Click Save All At

Explanation / Answer

(A) Pr(Z < 0) = 0.5000

(B) Pr(Z > 0) = 0.5000

(C) Pr(Z < -1.32) = 0.0934

(D) Pr(Z < 0.72) = 0.7642

(E) Pr(Z > -1.22) = 1 - Pr(Z < -1.22) = 1 - 0.1112 = 0.8888

(F) Pr(Z > 2.17) = 1 - Pr(Z < 2.17) = 1 - 0.9850 = 0.0150

(G) Pr(0 < Z < 3.18) = Pr(Z < <3.18) - Pr(Z < 0) = 0.9993 - 0.5 = 0.4993

(H) Pr(-1.40 < Z < <2.03) = Pr(Z < 2.03) - Pr(Z < -1.40) = 0.9788 - 0.0808 = 0.8981

(I) Pr(-2.11 < Z < -1.25) = Pr(Z < -1.25) - Pr(Z < -2.11) = 0.1056 - 0.0174 = 0.0882

(J) Pr(1.85 < Z < 2.78) = Pr(Z < 2.78) - Pr(Z < 1.85) = 0.9973 - 0.9678 = 0.0294

(K) Pr(Z < -1.75 or Z > 3.00) = 1- Pr(Z < 3) + Pr(Z < -1.75) = 1 - 0.9987 + 0.0401 = 0.0414

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote