Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A lead inspector at ElectroTech, an electronics assembly shop, wants to convince

ID: 3060740 • Letter: A

Question

A lead inspector at ElectroTech, an electronics assembly shop, wants to convince management that it takes longer, on a per-component basis, to inspect large devices with many components than it does to inspect small devices because it is difficult to keep track of which components have already been inspected. To prove her point, she has collected data from the last 25 devices. The data are shown in the accompanying table.

Number of Components

on Device

  http://lectures.mhhe.com/connect/0078020557/Ch16/Static/Ch16_Q10_Data_File.xlsx

a.

A scatterplot of the above data is shown below. Does the lead inspector’s claim seem credible?

Number of Components

on Device

Inspection Time (seconds) 32 84 13 49 9 30 17 60 15 51 11 41 24 71 42 99 7 22 12 42 19 63 8 26 30 80 12 48 10 31 19 62 16 52 19 60 25 72 44 102 16 59 13 44 21 67 12 46 23 70 * - 86% (40) Mon 11:00 AM 9 0 i Firefox File Edit View History Bookmarks Tools Window Help Ch. 16 HW C Chegg Study | Guided Solution x + -) C 0 ezto.mheducation.com/hm.tpx e *** V * Q Search lille S 0 = Time (sec) 8 8 8 * & - ODOS A B D P - E O Q8 - TE FI Number of components O Yes O No b-1. Estimate the linear, quadratic, and cubic regression models. Report the Adjusted R for each model. (Round your answers to 4 decimal places.) Linear model Quadratic model Cubic model Adjusted R2 0.9106 0.9572 0.9614 b-2. Which model has the best fit?

Explanation / Answer

a)

Yes

b-1)

Linear Model

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.968

R Square

0.936

Adjusted R Square

0.933

Standard Error

5.368

Observations

25

ANOVA

df

SS

MS

F

Significance F

Regression

1

9723.87

9723.87

337.49

0.00

Residual

23

662.69

28.81

Total

24

10386.56

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

18.59

2.36

7.87

0.00

13.70

23.47

Number of Components (x)

2.06

0.11

18.37

0.00

1.83

2.29

Quadratic Model

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.99

R Square

0.98

Adjusted R Square

0.98

Standard Error

3.21

Observations

25

ANOVA

df

SS

MS

F

Significance F

Regression

2

10159.81

5079.90

492.86

0.00

Residual

22

226.75

10.31

Total

24

10386.56

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

0.09

3.18

0.03

0.98

-6.49

6.68

Number of Components (x)

3.96

0.30

13.21

0.00

3.34

4.58

x^2

-0.04

0.01

-6.50

0.00

-0.05

-0.03

Cubic Model

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.99

R Square

0.99

Adjusted R Square

0.99

Standard Error

2.35

Observations

25

ANOVA

df

SS

MS

F

Significance F

Regression

3

10270.93

3423.64

621.79

0.00

Residual

21

115.63

5.51

Total

24

10386.56

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

-21.85

5.41

-4.04

0.00

-33.09

-10.60

Number of Components (x)

7.56

0.83

9.10

0.00

5.83

9.29

x^2

-0.21

0.04

-5.49

0.00

-0.29

-0.13

x^3

0.00

0.00

4.49

0.00

0.00

0.00

Model

Adj r^2

Linear Model

0.933

Quadratic Model

0.98

Cubic Model

0.99

b-2)

Cubic model has the best fit.

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.968

R Square

0.936

Adjusted R Square

0.933

Standard Error

5.368

Observations

25

ANOVA

df

SS

MS

F

Significance F

Regression

1

9723.87

9723.87

337.49

0.00

Residual

23

662.69

28.81

Total

24

10386.56

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

18.59

2.36

7.87

0.00

13.70

23.47

Number of Components (x)

2.06

0.11

18.37

0.00

1.83

2.29

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote