Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

ACT GPA 21 3.897 14 3.885 28 3.778 22 2.54 21 3.028 31 3.865 32 2.962 27 3.961 2

ID: 3056626 • Letter: A

Question

ACT GPA

21 3.897

14 3.885

28 3.778

22 2.54

21 3.028

31 3.865

32 2.962

27 3.961

29 0.5

26 3.178

24 3.31

30 3.538

24 3.083

24 3.013

33 3.245

27 2.963

25 3.522

31 3.013

25 2.947

20 2.118

24 2.563

21 3.357

28 3.731

27 3.925

28 3.556

26 3.101

28 2.42

22 2.579

26 3.871

21 3.06

25 3.927

16 2.375

28 2.929

26 3.375

22 2.857

24 3.072

21 3.381

30 3.29

27 3.549

26 3.646

26 2.978

30 2.654

24 2.54

26 2.25

29 2.069

24 2.617

31 2.183

15 2

19 2.952

18 3.806

27 2.871

16 3.352

27 3.305

26 2.952

24 3.547

30 3.691

21 3.16

20 2.194

30 3.323

29 3.936

25 2.922

23 2.716

25 3.37

23 3.606

30 2.642

21 2.452

24 2.655

32 3.714

18 1.806

23 3.516

20 3.039

23 2.966

18 2.482

18 2.7

29 3.92

20 2.834

23 3.222

26 3.084

28 4

34 3.511

20 3.323

20 3.072

26 2.079

32 3.875

25 3.208

27 2.92

27 3.345

29 3.956

19 3.808

21 2.506

24 3.886

27 2.183

25 3.429

18 3.024

29 3.75

24 3.833

27 3.113

21 2.875

19 2.747

18 2.311

25 1.841

18 1.583

20 2.879

32 3.591

24 2.914

35 3.716

25 2.8

28 3.621

28 3.792

25 2.867

22 3.419

30 3.6

20 2.394

20 2.286

31 1.486

20 3.885

29 3.8

28 3.914

16 1.86

28 2.948

at a small college selected 120 students at random from the new freshman class in a study to determine whether a student's grade point average (GPA) at the end of the freshman year can be predicted from their ACT test score. The data can be found at 1. The director of admissions "GPA.txt" a. Fit a simple linear regression using ACT score as the explanatory variable, and GPA as the response variable. Verify all necessary model assumptions and include all necessary plots; b. Estimate the parameter ; c· Use a t-test to determine whether or not there a linear relationship between ACT score and GPA: d. Compute the ANOVA table corresponding to the model; From the table determine the mean square error (MSE) f· Use the ANOVA F-test to determine whether or not there is a linear relationship between ACT score and GPA; g. How do the results in (e) compare to those in (b)? h. How do the results in (f) compare to those in (c)? i. What proportion of the variation in GPA is explained by the re- gression model?

Explanation / Answer

We use Minitab to solve this question.

Regression Analysis: GPA versus ACT

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 1 3.588 3.5878 9.24 0.003
ACT 1 3.588 3.5878 9.24 0.003
Error 118 45.818 0.3883
Lack-of-Fit 19 6.486 0.3414 0.86 0.632
Pure Error 99 39.332 0.3973
Total 119 49.405


Model Summary

S R-sq R-sq(adj) R-sq(pred)
0.623125 7.26% 6.48% 3.63%


Coefficients

Term Coef SE Coef T-Value P-Value VIF
Constant 2.114 0.321 6.59 0.000
ACT 0.0388 0.0128 3.04 0.003 1.00


Regression Equation

GPA = 2.114 + 0.0388 * ACT

___________________________________________________________________________________________

b) Estimated parmeter of sigma is 0.623125.

c) The t value is    3.04 & p- value is 0.003 therefore their is correlation between ACT score and GPA

d)

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 1 3.588 3.5878 9.24 0.003
ACT 1 3.588 3.5878 9.24 0.003
Error 118 45.818 0.3883
Lack-of-Fit 19 6.486 0.3414 0.86 0.632
Pure Error 99 39.332 0.3973
Total 119 49.405

MSE =   0.3883

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote