Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

ll semesters using the linear trend equation wil be opened in 2 Month New Checki

ID: 3055975 • Letter: L

Question

ll semesters using the linear trend equation wil be opened in 2 Month New Checking Accounts20 144 Martin Guenther, the manager of loy's Savings Bank (fictitious r the next 2 months. He has data tor the past 12 months on new checkneats in Hamburg, Germany, wents to forecast the number of new checkin months on new checking accounts opened which is shown in the tolowing t number of new checking accounts that will be opened in morth 13 uning trend-adjusted eponental snoding with 277 Forecasi us ume that the forecast for month 2 (F) is the naive torecast ano the treno tactor or morth 2is T,- the number of new checking accounts that will be opened in month 13 using a lnertrend equto. e two forecasting methods is more accurate? Use the MAPE to answer the question c. Which of the f Chonnai Inddia the niumhor of enntninnm

Explanation / Answer

a)

Actual Values

Forecast

Trend

Adjusted Forecast

% error

120

120

144

120

0

120

16.6666667

178

129.6

4.8

134.4

24.494382

228

148.96

12.08

161.04

29.3684211

245

180.576

21.848

202.424

17.3779592

252

206.3456

23.8088

230.1544

8.66888889

255

224.60736

21.03528

245.64264

3.66955294

262

236.764416

16.596168

253.360584

3.29748702

277

246.85865

13.3452008

260.2038504

6.06359191

282

258.91519

12.70087048

271.6160602

3.68224814

290

268.149114

10.96739729

279.1165111

3.75292719

295

276.889468

9.853875873

286.7433442

2.79886638

MAPE

10.8946356

b)

x

y

Forecast

xy

x^2

y^2

abs error

% error

1

120

153.626

120

1

14400

33.6261

28.0217

2

144

168.542

288

4

20736

24.5422

17.0432

3

178

183.458

534

9

31684

5.45825

3.06643

4

228

198.374

912

16

51984

29.6257

12.9937

5

245

213.29

1225

25

60025

31.7096

12.9427

6

252

228.207

1512

36

63504

23.7935

9.44186

7

255

243.123

1785

49

65025

11.8774

4.65781

8

262

258.039

2096

64

68644

3.96133

1.51196

9

277

272.955

2493

81

76729

4.04524

1.46038

10

282

287.871

2820

100

79524

5.87084

2.08186

11

290

302.787

3190

121

84100

12.7869

4.40928

12

295

317.703

3540

144

87025

22.703

7.69593

MAPE

8.77724

b1= nE(xy)-ExEy/nE(x2)-(Ex2)

    = 14.92

b0= Ey-b1Ex/n

    = 138.71

y= 138.71+14.92*x

y=138.71+14.92*13

y=138.71+193.96

y=332.67

Excel: -

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.93

R Square

0.86

Adjusted R Square

0.85

Standard Error

22.58

Observations

12

ANOVA

df

SS

MS

F

Significance F

Regression

1

31816.01

31816.01

62.40

0.00

Residual

10

5098.66

509.87

Total

11

36914.67

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

138.71

13.90

9.98

0.00

107.75

169.68

x

14.92

1.89

7.90

0.00

10.71

19.12

c)

Using MAPE, linear trend is a better method

Actual Values

Forecast

Trend

Adjusted Forecast

% error

120

120

144

120

0

120

16.6666667

178

129.6

4.8

134.4

24.494382

228

148.96

12.08

161.04

29.3684211

245

180.576

21.848

202.424

17.3779592

252

206.3456

23.8088

230.1544

8.66888889

255

224.60736

21.03528

245.64264

3.66955294

262

236.764416

16.596168

253.360584

3.29748702

277

246.85865

13.3452008

260.2038504

6.06359191

282

258.91519

12.70087048

271.6160602

3.68224814

290

268.149114

10.96739729

279.1165111

3.75292719

295

276.889468

9.853875873

286.7433442

2.79886638

MAPE

10.8946356