Thirteen tons of cheese is stored in some old gypsum mines, including “22-pound”
ID: 3054318 • Letter: T
Question
Thirteen tons of cheese is stored in some old gypsum mines, including “22-pound” wheels (label weight). A random sample of n = 9 of these wheels yielded the following weights in pounds: 21.50 18.95 18.55 19.40 19.15 22.35 22.90 22.20 23.10 Assuming that the distribution of the weights of the wheels of cheese is N(µ ?2 ) find:
(1) an unbiased point estimate of µ
(2) an unbiased point estimate of ?2
(3) a 90% confidence interval for µ
(4) a 95% confidence interval for ?2
(5) a 95% confidence interval for ?.
Explanation / Answer
1)
mean
20.9 AVERAGE
2)
sd^2
3.4538 VAR.S
3)
mean= 20.9
sd= 1.858426754
u= 400
n= 9
alpha= 0.1
t(a/2,n-1)
t(0.1/2,9-1)
1.860
CI = mean +- t(a/2,n-1)*(sd/sqrt(n))
lower = 20.9 - 1.86*(1.85842675400458/sqrt(9))= 19.75
upper = 20.9 + 1.86*(1.85842675400458/sqrt(9))= 22.05
4)
chisq(1-a/2,n-1)
chisq(1-0.05/2,9-1)
=CHIINV(1-0.05/2,9-1)
2.1797
chisq(a/2,n-1)
=chisq(0.05/2,9-1)
=CHIINV(1-0.05,9-1)
2.7326
lower limit for popn varince
(n-1)*s^2 / chisq(a/2,n-1)
=(9-1)*3.4538/2.7326
10.111396
upper limit for popn variance
(n-1)*s^2 / chisq(1-a/2,n-1)
=(9-1)*3.4538/2.1797
12.67624
5)
CI for popn s.d.
lower= =SQRT(10.111396) = 3.1798
upper= =SQRT(12.67624) = 3.5604
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.