Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question 2 A survey of the commercial activities was conducted for five zones in

ID: 3042109 • Letter: Q

Question

Question 2 A survey of the commercial activities was conducted for five zones in an analysis area The data were collected based on three types of employment, namely manufacturing, retail and service, and others The resulted zonal employment of three dfferent commercial types and their respective trip attractions are listed in the following table Zonal Employment Trip Attraction ZoneManuf. Ret&Ser; Others Total X2 X3 X X1 6820 2547 115 9482 9428 1899 0 2010 2192 87 259 574 330 127 0 127153 813 29 3836 3948 228 2729 a) Determine a single linear regression equation between dependent variable Y and each of between dependent variable Y and independent the constants and coefficients of variables and coefficients of correlation derived from 1-6 independent varables XX.x.2 ad X3. hes of Exe manual calculation is acceptable.) Determine a multiple linear regression equation variables X1, X2, and X3. (The use of Excel or a similar tool is suggested.) l b) a) and b) into a single table. Select the equations that might be acceptable for use in trip generation and give the reasons.

Explanation / Answer

using R


x1 <- c( 6820,111,228,0,2729)

x2 <- c(2547 , 1899 , 87 , 127 , 813)

x3 <- c( 115,0,259,0,294)
> x <- c(9482,2010,574,127,1836)
> model <- lm (y~x)
> summary(model)

Call:
lm(formula = y ~ x)

Residuals:
      1       2       3       4       5
1.624 -13.327   4.721   2.425   4.557

Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6594628 5.0592008   1.119    0.345
x           -0.0006627 0.0011447 -0.579    0.603

Residual standard error: 8.741 on 3 degrees of freedom
Multiple R-squared: 0.1005,    Adjusted R-squared: -0.1993
F-statistic: 0.3352 on 1 and 3 DF, p-value: 0.6032

model1 <- lm (y~x1)
> summary(model1)

Call:
lm(formula = y ~ x1)

Residuals:
      1       2       3       4       5
-2.110 -13.066   5.951   3.918   5.307

Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0818353 5.1526688   0.792    0.486
x1          -0.0001425 0.0015676 -0.091    0.933

Residual standard error: 9.203 on 3 degrees of freedom
Multiple R-squared: 0.002748, Adjusted R-squared: -0.3297
F-statistic: 0.008265 on 1 and 3 DF, p-value: 0.9333

model2 <- lm (y~x2)
> summary(model2)

Call:
lm(formula = y ~ x2)

Residuals:
      1       2       3       4       5
5.1300 -8.4080 0.6986 -1.0830 3.6625

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.776418   4.101619   2.384   0.0973 .
x2          -0.005460   0.002794 -1.954   0.1456
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.112 on 3 degrees of freedom
Multiple R-squared: 0.5601,    Adjusted R-squared: 0.4135
F-statistic: 3.82 on 1 and 3 DF, p-value: 0.1456

model3 <- lm (y~x3)
> summary(model3)

Call:
lm(formula = y ~ x3)

Residuals:
      1       2       3       4       5
-2.1250 -7.9513 1.6489 9.0487 -0.6214

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.04873    4.68043 -0.224    0.837
x3           0.03629    0.02563   1.416    0.252

Residual standard error: 7.135 on 3 degrees of freedom
Multiple R-squared: 0.4006,    Adjusted R-squared: 0.2008
F-statistic: 2.005 on 1 and 3 DF, p-value: 0.2517

b)

model_mult <- lm (y~x1+x2+x3)
> summary(model_mult)

Call:
lm(formula = y ~ x1 + x2 + x3)

Residuals:
        1         2         3         4         5
-0.004109 0.001059 -0.010807 0.002729 0.011128

Coefficients:
              Estimate Std. Error t value Pr(>|t|)  
(Intercept) 9.234e+00 1.731e-02 533.62 0.001193 **
x1           2.360e-03 4.813e-06 490.38 0.001298 **
x2          -9.741e-03 1.323e-05 -736.43 0.000864 ***
x3           4.192e-03 7.572e-05   55.37 0.011497 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01631 on 1 degrees of freedom
Multiple R-squared:      1,     Adjusted R-squared:      1
F-statistic: 3.192e+05 on 3 and 1 DF, p-value: 0.001301


c) make table yourself ,

all results are given.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote